
LETTER
doi:10.1038/nature11401

FTO genotype is associated with phenotypic
variability of body mass index
A list of authors and their affiliations appears at the end of the paper.

There is evidence across several species for genetic control of
phenotypic variation of complex traits1–4, such that the variance
among phenotypes is genotype dependent. Understanding genetic
control of variability is important in evolutionary biology, agricul-
tural selection programmes and human medicine, yet for complex
traits, no individual genetic variants associated with variance, as
opposed to the mean, have been identified. Here we perform a
meta-analysis of genome-wide association studies of phenotypic
variation using 170,000 samples on height and body mass index
(BMI) in human populations. We report evidence that the single
nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus,
which is known to be associated with obesity (as measured by mean
BMI for each rs7202116 genotype)5–7, is also associated with
phenotypic variability. We show that the results are not due to
scale effects or other artefacts, and find no other experiment-wise
significant evidence for effects on variability, either at loci other
than FTO for BMI or at any locus for height. The difference in
variance for BMI among individuals with opposite homozygous
genotypes at the FTO locus is approximately 7%, corresponding to
a difference of 0.5 kilograms in the standard deviation of weight.
Our results indicate that genetic variants can be discovered that are
associated with variability, and that between-person variability in
obesity can partly be explained by the genotype at the FTO locus.
The results are consistent with reported FTO by environment
interactions for BMI8, possibly mediated by DNA methylation9,10.
Our BMI results for other SNPs and our height results for all SNPs
suggest that most genetic variants, including those that influence
mean height or mean BMI, are not associated with phenotypic
variance, or that their effects on variability are too small to detect
even with samples sizes greater than 100,000.

Genetic studies of complex traits usually focus on quantifying and
dissecting phenotypic variation within populations, by contrasting
mean differences in phenotypes between genotypes. For example, in
association studies the difference between the average phenotype (P) of
each genotype is tested. In addition, the phenotypic variance among
individuals of the same genotype (G) can vary across genotypes, so that
phenotypic variance conditional on genotype, var(PjG), is not con-
stant. Phenotypic variance given a particular genotype does not need to
be due to sensitivity to external environmental factors but can, for
example, be caused by developmental fluctuation of the internal
micro-environment in a genotype-dependent manner1. For example,
genetic control of stochastic variation in development or in homeo-
static control1,4. The difference between genotypes can also depend on
external factors, for example, on the environment in which they are
reared, in which case there is a genotype by environment (G 3 E)
interaction. In species in which the same genotype can be measured
across defined environments, such as in plant or animal populations,
the difference in mean phenotype for each genotype can be quantified
experimentally, and is known as the reaction norm of the genotype11,12.
However, any environment is likely to be heterogeneous, so that the
environment experienced by each individual differs, although these
differences are not formally recognized by the experimenter. In this
situation, if a G 3 E interaction exists it may manifest as differences in

environmental sensitivity so that genotypes differ in phenotypic vari-
ance. Therefore, even if the environments, internal or external, are not
directly measured, evidence for genetic control of variation can be
quantified through an analysis of variability.

There is empirical evidence for genetic control of phenotypic vari-
ation in several species1, including Drosophila13, snails14, maize15 and
chickens3, and specific quantitative trait loci with an effect on variance
have been reported for yeast2 and Arabidopsis4. Many theories and
methods to identify genetic loci responsible for phenotypic variability
have been proposed1,16–18. In humans, there have been reports that
variability of serum cholesterol and triglyceride levels within mono-
zygotic twin pairs depends on their genotype at the MN blood group
system19. In clinical practice, knowledge of phenotypic variability as a
function of genotype may be important when the phenotypes are risk
factors for disease or treatment response, in particular when there are
no mean differences between genotypes in the population19.

Detection of genetic variation in environmental or phenotypic vari-
ance requires large sample sizes because relative to their expected
values, the variance has a larger sampling error than the mean16,20.
We performed a meta-analysis of genome-wide association studies
(GWAS) of phenotypic variation for height and BMI in human popu-
lations on approximately 170,000 samples comprising 133,154 in a
discovery set and 36,727 for in silico replication, and report a single
locus with a genome-wide significant effect on variability in BMI.
Height and BMI were chosen because genetic effects on variability in
height and size traits have been reported in other species, and because
very large samples of genotyped and phenotyped individuals are avail-
able through existing research consortia.

We performed a discovery meta-analysis of 38 studies consisting of
133,154 individuals (60% females) of recent European decent to
identify SNPs that are associated with the variability of height or
BMI. In each study, ,2.44 million genotyped and imputed autosomal
SNPs were included in the analysis after applying quality-control
filters. We adjusted height and BMI phenotypes for possible covariates
such as age, sex and case-control status, and standardized them to z
scores by an inverse-normal transformation. We then regressed the
squared z scores (z2), which are a measure of variance20, on the geno-
type indicator variable of each SNP to test for association of the SNP
with trait variability. The association statistics were corrected by the
genomic control method21 in individual studies and then combined by
an inverse-variance meta-analysis across all of the studies (see
Methods). We selected 42 SNPs at 6 loci for height and 51 SNPs at 7
loci for BMI with P , 5 3 1026 for in silico replication (Supplementary
Fig. 1). We examined the top two SNPs at each of the 6 loci for height
and 7 loci for BMI in a further sample of 36,727 individuals (54%
females) of European ancestry from 13 studies (Methods). For BMI,
only rs7202116 at the FTO locus (Fig. 1) and rs7151545 at the RCOR1
locus (Supplementary Fig. 2) were replicated at genome-wide signifi-
cance level, with P 5 2.9 3 1024 and P 5 3.6 3 1023 in the validation
set and P 5 2.4 3 10210 and P 5 4.1 3 1028 in the combined set,
respectively (Table 1). None of the height SNPs was replicated
(Table 1). We show by an approximate conditional analysis using
summary statistics from the discovery meta-analysis and estimated
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linkage disequilibrium structure from the Atherosclerosis Risk In
Communities (ARIC) cohort that there is no secondary associated
SNP in the FTO region when conditioning on rs7202116 (Supplemen-
tary Fig. 3). The estimate of the effect associated with rs7202116 on
BMI z2 was slightly larger in men (0.041, standard error (SE) 5 0.009)
than in women (0.033, SE 5 0.007) in the combined set but the differ-
ence was not significant (P 5 0.670). The RCOR1 SNP only just passed
the genome-wide significance level (5 3 1028), however, it did not
reach the experiment-wise significance level (2.5 3 1028) considering
that two independent traits were tested. There were several case-
control studies included in the meta-analysis that were ascertained
for diseases that may be correlated with BMI. We performed a further
meta-analysis in the combined set excluding these case-control studies,
and the FTO SNP rs7202116 remained genome-wide significant with
P 5 2.8 3 10211 but the RCOR1 SNP did not with P 5 3.6 3 1025

(Supplementary Table 1). We therefore focus on the FTO locus in
the main text and provide the results for the RCOR1 locus in the
Supplementary Information.

On the scale on which BMI is measured, the predicted per-allele
effect of the G allele (the other allele is A) of rs7202116 on the mean

difference is 0.37 kg m22 in men and 0.43 kg m22 in women22, and the
effect on the variance difference is 0.79 kg2 m24 in men and 1.09 kg2

m24 in women, reflecting the larger standard deviation of BMI in
women compared with men (Supplementary Table 2). Assuming an
additive model, the mean difference between the GG and AA geno-
types is 0.74 kg m22 in men and 0.86 kg m22 in women, with a vari-
ance difference between the two genotypes of 1.58 kg2 m24 in men and
2.18 kg2 m24 in women, which is 7.2% of the phenotypic variance of
BMI in both men and women. To provide an illustration of the effect of
rs7202116 on BMI variance, we did an approximate calculation of its
effect on the variance of weight. If we take the mean height of 1.78 m
for men and 1.65 m for women, the difference in the variance of weight
between the two genotype groups is roughly 16 kg2 in both men and
women (Supplementary Table 2). For example, if the standard devi-
ation (SD) of weight is 15 kg for men, the predicted SD of weight in the
two homozygous genotype classes is 14.73 and 15.27 kg, respectively.

The effect of a SNP on variance could be owing to our use of the z2

value as a measure of variance or to a general relationship between
mean and variance of BMI1,23. Below we present evidence that excludes
these two explanations.
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Figure 1 | Test statistics (–log10(P values)) for association with BMI
variability in the discovery meta-analysis of SNPs at the FTO locus against
their physical location. The SNPs surrounding rs7202116 are colour-coded to
reflect their linkage disequilibrium with rs7202116. The recombination rates
are plotted in cyan to reflect local linkage disequilibrium structure. Genes, the

position of exons and the direction of transcription from the University of
California, Santa Cruz (UCSC) genome browser are noted. The P value for
rs7202116 in the combined set is represented by a purple diamond, and that
from the discovery set by a purple circle.

Table 1 | Associations of the top 6 and 7 loci with variance of height and BMI, respectively
Chr. SNP bp Nearest gene CA Discovery

Freq. b SE P n

Height
1 rs6429820 14,210,915 PRDM2 G 0.196 20.035 0.0071 1.0 3 1026 129,200
2 rs6429975 143,002,110 KYNU T 0.180 20.036 0.0074 1.0 3 1026 129,196
2 rs6748377 45,002,877 SIX3 T 0.175 20.038 0.0075 4.0 3 1027 129,183
7 rs10486722 41,778,433 INHBA C 0.339 0.029 0.0060 1.0 3 1026 128,834
8 rs1026852 3,577,500 CSMD1 G 0.444 20.029 0.0059 1.0 3 1026 126,363
14 rs12891343 34,453,301 BAZ1A T 0.227 0.031 0.0068 5.0 3 1026 128,725
BMI
2 rs12328474 140,638,570 LRP1B G 0.263 20.038 0.0078 1.2 3 1026 104,640
2 rs10932241 208,685,200 CRYGD C 0.407 0.028 0.0059 2.9 3 1026 127,597
4 rs11942401 188,052,244 FAT A 0.140 20.043 0.0085 4.3 3 1027 125,010
6 rs1418304 82,795,837 IBTK G 0.496 20.026 0.0057 3.3 3 1026 127,611
14 rs12894649 102,232,512 RCOR1 C 0.057 0.061 0.0126 1.3 3 1026 127,080
14 rs7151545 102,247,397 RCOR1 G 0.057 0.059 0.0126 2.4 3 1026 127,080
16 rs7193144 52,368,187 FTO C 0.403 0.030 0.0058 1.9 3 1027 127,537
16 rs7202116 52,379,116 FTO G 0.402 0.035 0.0067 2.0 3 1027 95,966
18 rs620052 37,900,962 PIK3C3 G 0.378 0.033 0.0069 1.6 3 1026 95,971

The squared z scores (z2) were used to test for association of the top 6 and 7 SNPs with trait variability (height and BMI, respectively). The discovery set consists of 133,154 individuals, and data for in silico
replication are from another 36,727 samples. At both the FTO and RCOR1 loci, the second top SNPs (highlighted in bold) in the discovery set pass the single trait genome-wide significance level (5 3 1028) in the
combined set. b, estimate of additive effect on z2; bp, physical position; CA, coded allele; chr., chromosome; freq., frequency of the coded allele.

RESEARCH LETTER

2 6 8 | N A T U R E | V O L 4 9 0 | 1 1 O C T O B E R 2 0 1 2

Macmillan Publishers Limited. All rights reserved©2012



If an SNP has an effect on the mean, the test statistic for association
of the SNP with z2 will be inflated, and the non-centrality parameter
(NCPv0) of the x2 test under the null hypothesis of no effect on variance
is: np(1 2 p)(1 2 2p)2(a 1 (1 2 2p)d)4, in which n is the sample size, p
is the frequency of the coded allele, and a and d are the additive and
dominance effects, respectively, on the mean difference (Supplemen-
tary Note). We show by analysis and simulation results based on an
additive and dominance genetic model that such inflation is inversely
proportional to the minor allele frequency (MAF) of the SNP; that is,
SNPs with a lower MAF will tend to have higher test statistics under
the null hypothesis (Supplementary Fig. 4). However, when we plotted
the observed test statistics of the confirmed 180 height loci24 and 32
BMI loci22 that have the largest reported effects on the mean, we did
not observe such a trend (Supplementary Fig. 5). We calculated the
NCPv0 of the known height and BMI loci given the effects on the mean
from the published papers22,24, and the NCPv0 values of all these known
loci were smaller than 1 (results not shown). The observed genomic
inflation factor in the discovery meta-analysis was 1.039 for height and
1.033 for BMI (Supplementary Fig. 6). This small inflation could be
due to many SNPs affecting the mean and therefore having a tiny effect
on z2 (Supplementary Fig. 7), or many SNPs that have an effect on the
variance that is too small to be significant even with our large sample
size. Across common SNPs in the genome, variants at the FTO locus
have the largest effect size on BMI22. The G allele of the FTO SNP
rs7202116 has a population frequency of ,0.4 and an additive effect
on the mean BMI of ,0.1 z-score units5,22. If our significant result at
the FTO locus is due only to an allelic effect on mean BMI, we would
expect an allelic effect on variability of ,0.002 (predicted from the
equation in the Supplementary Note), which is very small compared
with the observed effect of 0.036. For some traits, the variance changes
in a predictable manner as the mean changes. In this case, a scale
transformation, such as a logarithmic transformation, can remove
effects on the variance when they are simply due to an effect on the
mean1. We were interested in effects of SNP on variability that would
remain after a scale transformation, and therefore sought to exclude
scale effects that could explain our observed association. We per-
formed further analyses in three data sets each with approximately
20,000 individuals with individual-level genotype and phenotype data
available to verify the effects of rs7202116 at the FTO locus on BMI
variance (Methods and Table 2). We used several tests, including
Bartlett’s test statistic, to test for the difference in variance between
the three genotypes. The Bartlett’s test P value was ,0.05 in each of the
three data sets, regardless of whether or not the BMI phenotypes were
adjusted for the mean difference, logarithm transformed or inverse-
normal transformed (Table 2). In the combined analysis of the three

data sets totalling 60,624 individuals, the effect of rs7202116 on the
BMI z2 score after adjusting for the mean difference was 0.030
(P 5 1.2 3 1024) for inverse-normal transformed BMI, 0.065
(2.3 3 10212) for logarithm-transformed BMI, and 0.097
(8.9 3 10216) for BMI without scale transformation (Table 2). The
decrease of the effect of rs7202116 on BMI z2 owing to the adjustment
of the mean difference was ,0.003, in line with that of ,0.002 as
predicted from the theory above. Similar conclusions as above can
be drawn from the further analyses for rs7151545 at the RCOR1 locus
(Supplementary Table 3). We plotted the test statistics and estimates
for the effects on the variability in our discovery meta-analysis against
those for the effects on the mean from the published GIANT meta-
analyses for height24 and BMI22, and did not find any apparent correla-
tions except for a few outlying SNPs at the FTO locus (Supplementary
Fig. 7). These results together suggest that the observed effect of the
FTO SNP on variability is neither a consequence of the effect on the
mean nor due to the choice of scale, and that our inverse-normal
transformation is likely to be overly conservative. Results from reported
quantile regression of untransformed BMI on a multiple SNP predictor
of BMI and on FTO25 are consistent with our results but are also
consistent with scale effects due to the skewed distribution of untrans-
formed BMI. We have shown in this study that the effect of FTO on
variability is not due to a scale effect and, concordantly, a quantile
regression of both transformed and untransformed BMI z-scores on
the SNPs at the FTO and RCOR1 loci on BMI on 17,974 individuals
shows a relationship between effect size and the quantile of the distri-
bution (Supplementary Fig. 8). By contrast, the use of untransformed
BMI induces widespread correlation between estimated SNP effects on
the mean and on variance (Supplementary Fig. 9).

We have reported a meta-analysis of GWAS of squared normalized
residuals for two quantitative traits in human populations, and provide
empirical evidence that the FTO and RCOR1 loci influence phenotypic
variance of obesity. Conversely, we did not observe any significant
SNPs for height or any significant SNPs other than those at the FTO
and RCOR1 loci for BMI to be genome-wide significantly associated
with phenotypic variance (Table 1), even for those loci known to have
effects on the mean (Supplementary Fig. 5), which indicates that SNP
effects on variance are uncommon for height and BMI, and those
previously identified SNP effects on the mean, although very small,
are robust to environmental perturbation. We provide evidence that
the association between the FTO locus and BMI variability is not due to
artefacts such as scale or ascertainment. We also discuss that it is
implausible that the observed effect of the FTO SNP on variance is
due to its strong linkage disequilibrium (D9 5 1) with a causal variant
that has a large effect on the mean (Supplementary Note). The FTO

In silico replication Combined

Freq. b SE P n b SE P n

0.209 20.002 0.0131 8.9 3 1021 32,355 20.027 0.0062 1.0 3 1025 161,555
0.177 20.002 0.0137 8.9 3 1021 32,472 20.028 0.0065 1.0 3 1025 161,668
0.185 20.006 0.0138 6.7 3 1021 31,988 20.031 0.0066 3.0 3 1026 161,171
0.318 20.005 0.0112 6.3 3 1021 32,416 0.021 0.0053 6.0 3 1025 161,250
0.435 20.004 0.0110 7.4 3 1021 31,837 20.023 0.0052 7.0 3 1026 158,200
0.225 0.012 0.0120 3.2 3 1021 36,150 0.027 0.0059 6.0 3 1026 164,875

0.250 0.035 0.0152 2.0 3 1022 32,403 20.023 0.0069 1.1 3 1023 137,043
0.411 20.006 0.0125 6.2 3 1021 28,641 0.022 0.0053 5.6 3 1025 156,238
0.128 0.003 0.0187 8.5 3 1021 28,016 20.035 0.0077 6.2 3 1026 153,026
0.493 0.004 0.0103 6.9 3 1021 36,721 20.019 0.0050 1.2 3 1024 164,332
0.050 0.058 0.0248 1.9 3 1022 32,298 0.060 0.0112 7.9 3 1028 159,378
0.053 0.083 0.0285 3.6 3 1023 28,040 0.063 0.0115 4.1 3 1028 155,120
0.406 0.020 0.0115 8.0 3 1022 32,449 0.028 0.0052 5.4 3 1028 159,986
0.417 0.039 0.0107 2.9 3 1024 35,267 0.036 0.0057 2.4 3 10210 131,233
0.382 20.010 0.0111 3.7 3 1021 34,668 0.021 0.0059 3.5 3 1024 130,639

Table 1 j Continued
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SNPs that are associated with variance are also associated with mean
differences in BMI. Interestingly, this phenomenon seems to be
restricted to the FTO gene and to obesity, because we did not observe
such effects for height or for BMI at loci other than FTO. One possible
explanation of the observation is a differential response to physical
activity26, because interactions between FTO genotypes and physical
activity have been reported for the same SNPs as we report in this
study: the G allele that is associated with an increase in mean BMI has a
smaller effect in the group of people with a high level of physical
activity than in the absence of physical activity8,27,28. There may be
other unknown lifestyle factors, including diet, that also interact with
the FTO genotype and result in the observed effect on variability.

We do not provide a mechanism of how alleles at FTO influence
variability (how FTO alleles affect the mean is also not known).
However, the fact that the allele that increases obesity also increases
variability suggests a breakdown of homeostatic control. Data on mice
lacking the Fto gene suggest that the observed effects on mean obesity
in humans may be due to upregulation or dysregulation of FTO
expression, resulting in an increased susceptibility to obesity29. If both

upregulation and impairment of FTO expression have a role then this
could provide a mechanism of the observed effect on variability. The
FTO protein affects demethylation of nuclear RNA in vitro29, but
whether the efficiency of this process depends on the FTO genotype
or how this may be related to the observed effects on BMI is not clear.
Notably, a recent study reported that rs7202116 allele G, which is
present on the obesity-susceptibility haplotype at the FTO locus,
creates a CpG site along with other variants in perfect linkage dis-
equilibrium with it9, and therefore risk alleles have increased DNA
methylation. In addition, it was reported that a CpG site in the first
intron of FTO showed significant hypomethylation in type 2 diabetes
cases relative to controls30, and that the risk variant seems to have an
effect on methylation status at other genes10. DNA methylation can be
affected by environmental influences, including dietary and lifestyle
factors, and may affect gene expression. For example, physical exercise
may increase gene expression at the FTO locus, but less so in GG
individuals compared with AA individuals because their alleles are
more methylated. This therefore suggests a possible mechanism for
the observed effects on both the mean and variability. However, more

Table 2 | Effects of the FTO SNP rs7202116 on BMI
BMI log(BMI) BMI (inv. norm.)

Unadj. Adj. Unadj. Adj. Unadj. Adj.

WGHS (n 5 22,888)
b 0.148 0.142 0.100 0.093 0.046 0.040

SE 0.021 0.020 0.015 0.015 0.013 0.013
P 4.5 3 10213 4.0 3 10212 5.5 3 10211 8.6 3 10210 6.8 3 1024 3.3 3 1023

Permutation P ,1 3 1024 ,1 3 1024 ,1 3 1024 ,1 3 1024 9.0 3 1024 3.9 3 1023

Bartlett’s P 1.1 3 10224 1.1 3 10224 2.0 3 10211 2.0 3 10211 6.5 3 1023 6.6 3 1023

Mean AA 20.070 0.0 20.069 0.0 20.068 0.0
Mean AG 20.001 0.0 20.001 0.0 0.0 0.0
Mean GG 0.161 0.0 0.159 0.0 0.152 0.0

Variance AA 0.895 0.900 0.932 0.937 0.971 0.977
Variance AG 1.002 1.008 0.995 1.001 0.990 0.996
Variance GG 1.194 1.202 1.132 1.138 1.060 1.066

EPIC (n 5 19,762)
b 0.077 0.076 0.049 0.048 0.027 0.026

SE 0.021 0.021 0.017 0.017 0.014 0.014
P 1.7 3 1024 2.1 3 1024 3.2 3 1023 3.9 3 1023 6.1 3 1022 7.1 3 1022

Permutation P ,1 3 1024 ,1 3 1024 4.9 3 1023 5.1 3 1023 6.4 3 1022 7.1 3 1022

Bartlett’s P 7.6 3 1027 7.6 3 1027 3.0 3 1023 3.0 3 1023 1.2 3 1021 1.2 3 1021

Mean AA 20.077 0.000 20.076 0.000 20.075 0.000
Mean AG 0.012 0.000 0.012 0.000 0.012 0.000
Mean GG 0.103 0.000 0.102 0.000 0.100 0.000

Variance AA 0.932 0.936 0.951 0.955 0.967 0.970
Variance AG 1.005 1.009 1.007 1.011 1.010 1.013
Variance GG 1.085 1.089 1.045 1.049 1.013 1.017

ARIC 1 QIMR 1 NHS 1 HPFS (n 5 17,974)
b 0.070 0.067 0.049 0.046 0.026 0.024

SE 0.022 0.022 0.017 0.017 0.015 0.015
P 1.7 3 1023 2.8 3 1023 3.6 3 1023 6.1 3 1023 8.9 3 1022 1.2 3 1021

Permutation P 1.6 3 1023 2.6 3 1023 3.8 3 1023 7.1 3 1023 8.7 3 1022 1.2 3 1021

Bartlett’s P 1.2 3 1027 1.2 3 1027 2.5 3 1024 2.5 3 1024 2.0 3 1022 2.0 3 1022

Mean AA 20.067 0.0 20.068 0.0 20.069 0.0
Mean AG 0.006 0.0 0.008 0.0 0.010 0.0
Mean GG 0.122 0.0 0.118 0.0 0.113 0.0

Variance AA 0.968 0.973 0.978 0.983 0.994 0.998
Variance AG 0.968 0.972 0.974 0.978 0.975 0.979
Variance GG 1.131 1.136 1.093 1.097 1.059 1.064

Combined (n 5 60,624)
b 0.100 0.097 0.068 0.065 0.034 0.030

SE 0.012 0.012 0.009 0.009 0.008 0.008
P 8.9 3 10217 8.9 3 10216 1.4 3 10213 2.3 3 10212 2.4 3 1025 1.2 3 1024

Bartlett’s P 1.3 3 10232 1.3 3 10232 8.5 3 10215 8.6 3 10215 4.4 3 1024 4.2 3 1024

Mean AA 20.071 0.0 20.071 0.0 20.070 0.0
Mean AG 0.005 0.0 0.006 0.0 0.007 0.0
Mean GG 0.129 0.0 0.127 0.0 0.122 0.0

Variance AA 0.93 0.93 0.95 0.96 0.98 0.98
Variance AG 0.99 1.00 0.99 1.00 0.99 1.00
Variance GG 1.14 1.14 1.09 1.09 1.04 1.05

The effects of the FTO SNP rs7202116 on the variance for BMI and log(BMI) were tested in three subsets of data. The BMI phenotypes were corrected for age effect and standardized to z scores using the mean and
standard deviation, or by an inverse-normal (inv. norm.) transformation in each gender group in each cohort. Phenotypes were adjusted (adj.) (or unadjusted (unadj.)) for mean difference in the three genotypes.
For the EPIC cohort, 2,397 samples were in the meta-analysis, and 17,376 were not part of the meta-analysis. For the combined ARIC, QIMR, NHS and HPFS cohort, 12,741 samples were in the meta-analysis and
5,233 samples were not. b, the effect of the G allele on z2; Bartlett’s P, P value calculated from the Bartlett’s test for variance difference in the three genotypes; EPIC, European Prospective Investigation into Cancer;
HPFS, Health Professionals Follow-up Study; NHS, Nurses’ Health Study; permutation P, empirical P value calculated from 10,000 permutations; QIMR, Queensland Institute of Medical Research; WGHS,
Women’s Genome Health Study.
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research is needed to determine the molecular effect and mechanism of
FTO on both the levels and variability of obesity.

Overall, our findings are consistent with a low heritability of pheno-
typic variability1 and no common genetic variants that account for a
large proportion of variation in environmental or phenotypic variability.
They also indicate an absence of widespread genotype-by-environment
interaction effects, at least for height and obesity in humans and with
interaction effects large enough to be detected in our study in which
specific environmental factors were not identified. Nevertheless, the
demonstration that individual genetic loci with effects on variability
can be identified with sufficiently large sample sizes facilitates further
study to understand the function and evolution of the genetic control of
variation.

METHODS SUMMARY
We performed a meta-analysis of 51 GWAS with 169,881 individuals of European
ancestry, and ,2.44 million genotyped or imputed SNPs after quality control. In
each study, association analysis of each SNP with height and BMI z2 was per-
formed after adjustment for covariates and followed by an inverse-normal trans-
formation. We meta-analysed the association results of each SNP from 38 studies
with 133,154 individuals as a discovery set, and validated the top SNPs identified in
the discovery set with association P values , 5 3 1026 in a separate sample of
36,727 individuals from 13 studies. Further analyses using individual-level geno-
type and phenotype data to test for difference in variance of BMI between the three
groups for the top SNPs at the FTO and RCOR1 loci were performed on 60,624
individuals, including 22,598 individuals who were not part of the meta-analysis.

Full Methods and any associated references are available in the online version of
the paper.
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Rivadeneira40,41,42, M. Carola Zillikens40, Lambertus A. Kiemeney113, Sita H.
Vermeulen113, Goncalo R. Abecasis43, David Schlessinger114, Sabine Schipf115,
Michael Stumvoll116,117, Anke Tönjes116,117, Tim D. Spector49, Kari E. North118,
Guillaume Lettre89,90, Mark I. McCarthy11,48,119, Sonja I. Berndt110, Andrew C.
Heath120, Pamela A. F. Madden120, Dale R. Nyholt2, Grant W. Montgomery2, Nicholas
G. Martin2, Barbara McKnight121, David P. Strachan17, William G. Hill122, Harold
Snieder33,35, Paul M. Ridker7,8, Unnur Thorsteinsdottir9,123, Kari Stefansson9,123,
Timothy M. Frayling124, Joel N. Hirschhorn22,23,24, Michael E. Goddard125,126 & Peter
M. Visscher1,2,127

1University of Queensland Diamantina Institute, The University of Queensland, Princess
Alexandra Hospital, Brisbane, Queensland 4102, Australia. 2Queensland Institute of
Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia. 3MRC
EpidemiologyUnit, Institute of Metabolic Science, CambridgeCB20QQ, UK. 4Mount Sinai
School of Medicine, New York, New York 10029, USA. 5Department of Internal Medicine,
Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan 48109, USA.
6Center for Computational Medicine and Bioinformatics, University of Michigan, Ann
Arbor, Michigan 48109, USA. 7Division of Preventive Medicine, Brigham and Women’s
Hospital, 900 Commonwealth Avenue, Boston, Massachusetts 02215, USA. 8Harvard
Medical School, Boston, Massachusetts 02215, USA. 9deCODE genetics, IS-101
Reykjavik, Iceland. 10Estonian Genome Center, University of Tartu, Tartu 50410, Estonia.
11Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
12Hudson Alpha Institute for Biotechnology, Huntsville, Alabama 35806, USA. 13Icelandic
Heart Association, IS-201 Kopavogur, Iceland. 14University of Iceland, IS-101 Reykjavik,
Iceland. 15Department of Medicine, University of Maryland School of Medicine,Baltimore,
Maryland 21201, USA. 16Department of Epidemiology, The University of North Carolina,
Chapel Hill, North Carolina 27514, USA. 17Division of Population Health Sciences &
Education, St George’s, University of London, London SW17 0RE, UK. 18Cardiovascular
Health Research Unit, Department of Medicine, University of Washington, Seattle,
Washington 98101, USA. 19Department of Medical Genetics, University of Lausanne,
1005 Lausanne, Switzerland. 20Swiss Institute of Bioinformatics, 1005 Lausanne,
Switzerland. 21MRC HGU at theMRC IGMMat theUniversity of Edinburgh, EdinburghEH8
9AG, UK. 22Department of Genetics, Harvard Medical School, Boston, Massachusetts
02115, USA. 23Divisions of Genetics and Endocrinology and Program in Genomics,
Children’s Hospital, Boston, Massachusetts 02115, USA. 24Metabolism Initiative and
Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
02142, USA. 25Department of Epidemiology, Subdivison Genetic Epidemiology, Erasmus
MC, Rotterdam, The Netherlands. 26Department of Genetics, Washington University
School of Medicine, St Louis, Missouri 63110, USA. 27Boston University, Boston,
Massachusetts 02118, USA. 28Department of Biostatistics and Center for Statistical
Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA. 29Universität zu
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METHODS
Fifty-one studies were included in the meta-analysis. All individuals were of recent
European descent. In each of the participating studies, genotyped SNPs that passed
standard quality-control processes (missingness, Hardy–Weinberg equilibrium
test and MAF) were used to impute the ungenotyped SNPs to the HapMap II
CEU reference panel31. We excluded SNPs with imputation quality score ,0.4
for IMPUTE32 and ,0.3 otherwise33,34. A summary of sample size, genotyping
platform, quality-control filters and the imputation tool of all the participating
studies is provided in Supplementary Table 4. We further excluded SNPs with
MAF , 0.01 in each study or in the meta-analysis, and retained about 2.68 million
autosomal SNPs in the analysis.

In each study, height and BMI phenotypes were adjusted for age and standardized
to z score by an inverse-normal transformation. The analysis protocol supplied to all
cohorts is given as a Supplementary Note. The descriptive statistics of phenotypes of
each study are shown in Supplementary Table 5. The association analyses of pheno-
typic variability were performed on a single-SNP basis by the following additive
genetic model: y 5 a 1 bx 1 e, in which y is z2, a is the intercept, b is the additive
SNP effect on z2, x is the allelic dosage coded as 0, 1 or 2 for the three genotype groups,
and e is the residual. We stratified the analysis by gender group and/or case-control
status where applicable. We selected 38 studies consisting of 133,154 individuals as
the discovery set by the time when data were available. We collected summary-level
association results of all the SNPs from these studies and adjusted the standard errors
of all SNPs by the genomic control approach in each study21, that is, multiplying the
standard errors of the estimates of b by the square root of the genomic inflation
factor21. We then combined the effect of each SNP by an inverse-variance meta-
analysis implemented in METAL35. In a regression analysis, the squared standard
error of the estimate of a SNP effect is: s2/(2p(1 2 p)n), in which s2 is the residual
variance, p is the frequency of the coded allele, and n is the sample size. This assumes
Hardy–Weinberg equilibrium of genotype frequencies. If the effect size is small, s2 is
approximately equal to the variance of y, which is 2. We checked the overall quality of
each study by plotting the median of 1/SE across all SNPs against the reported sample
size, and by plotting the median of 2p(1 2 p)nSE2 across all SNPs to see if it was close
to 2 (Supplementary Fig. 10). We further estimated the effective sample size of each

SNP by: ñ 5 2/(2p(1 – p)SE2), using the summary statistics of the whole discovery
set, and excluded SNPs with ñ , mean(ñ) 2 2SD(ñ) and retained ,2.44 million
SNPs for both height and BMI. We collected data from a further 36,727 samples
from 13 cohorts (Supplementary Tables 4 and 5), and validated the top SNPs at 6
associated loci for height and 7 for BMI (P , 5 3 1026) in these extra samples.

We performed further analyses in three data sets with a total sample size of 60,624
with individual-level genotype and phenotype data to verify our findings. These
three data sets include 22,888 individuals from the WGHS cohort, and 19,762
individuals from the EPIC cohorts, and a combined sample of 17,974 individuals
from the ARIC, QIMR, NHS and HPFS cohorts, with 17,365 individuals from the
EPIC cohort and 5,233 individuals from the NHS and HPFS cohorts not part of the
meta-analysis. We used logarithm or inverse-normal transformation to remove a
possible mean–variance relationship of BMI phenotypes, and adjusted the pheno-
type for the effect of the top SNP at the FTO or RCOR1 locus on the mean of BMI.
We performed permutation tests to assess the significance of the effect of FTO or
RCOR1 on BMI z2 with 10,000 permutations, and used the Bartlett’s statistic to test
for difference in variance of BMI between three genotypes for FTO or RCOR.

The plot of association results at the FTO locus in Fig. 1 was generated using
LocusZoom36 with the recombination rates and pairwise linkage disequilibrium r2

values between SNPs estimated from the HapMap CEU panel31.

31. The International HapMap Consortium. A second generation human haplotype
map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

32. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint
method for genom 3 102wide association studies by imputation of genotypes.
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