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Characterization of the epigenome promises to yield the functional elements buried in the human genome
sequence, thus helping to annotate non-codingDNA polymorphismswith regulatory functions. Here,we develop
two novel strategies to combine epigenomic data with transcriptomic profiles in humans or mice to prioritize
potential candidate SNPs associated with lipid levels by genome-wide association study (GWAS). First, after
confirming that lipid-associated loci that are also expression quantitative trait loci (eQTL) in human livers are
enriched for ENCODE regulatory marks in the human hepatocellular HepG2 cell line, we prioritize candidate
SNPs based on the number of these marks that overlap the variant position. This method recognized the
known SORT1 rs12740374 regulatory SNP associated with LDL-cholesterol, and highlighted candidate functional
SNPs at 15 additional lipid loci. In the second strategy, we combine ENCODE chromatin immunoprecipitation
followed by high-throughput DNA sequencing (ChIP-seq) data and liver expression datasets from knockout
mice lacking specific transcription factors. This approach identified SNPs in specific transcription factor binding
sites that are located near target genes of these transcription factors. We show that FOXA2 transcription factor
binding sites are enriched at lipid-associated loci and experimentally validate that alleles of one such proxy
SNP located near the FOXA2 target gene BIRC5 show allelic differences in FOXA2-DNA binding and enhancer
activity. These methods can be used to generate testable hypotheses for many non-coding SNPs associated
with complex diseases or traits.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Genome-wide association studies (GWAS) have identified thou-
sands of robust associations between single nucleotide polymorphisms
(SNPs) and complex human diseases and traits [13]. These SNPs are
often in linkage disequilibrium (LD) with many other known and
unknown DNA sequence variants and are located within non-coding
regions of the human genome. For these two reasons, at most GWAS
loci it has been difficult to identify the genes and variants that are
responsible for phenotypic variation. The 1000 Genomes Project has
generated an extensive catalogue of genetic variation across several
human populations, partly addressing the first challenge in GWAS
fine-mapping projects [1,2]. As for the second challenge, investigators
from the Encyclopedia of DNA Elements (ENCODE) Project recently
summarized results from comprehensive whole-genome analyses of
transcription, transcription factor association, chromatin structure, and
histone modification, allowing for a functional annotation of non-
codingDNA variants [9]. Furthermore, the ENCODEdatamight be useful
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to pinpoint functional regulatory variants from strongly correlated, but
not functional, LD proxies. Many groups have already utilized their own
epigenomic datasets or ENCODE data to show enrichment of chromatin
marks at GWAS loci, to identify relevant tissues for experimental design
or to prioritize candidate functional genes and DNA sequence variants
[8–10,16–18,23,26,29,32].

Additional work is needed to refine these existingmethods.We also
need to develop new tools when there is no evidence in human tissues
that the associated non-coding SNPs control gene expression, that is
when the SNPs are not expression quantitative trait loci (eQTLs). In an
effort to broaden the application of this approach by the community,
we further extended the use of epigenomic data to prioritize functional
candidate SNPs by developing two novel approaches, and we applied
these approaches to 95 loci associated with lipid levels in humans
[28]. We were particularly interested in testing if gene expression
datasets from relevant knockout mouse models could help prioritize
candidate functional genes and variants at GWAS loci. Such a strategy
could have broad implications as it may offer an alternative when
there is no eQTL evidence or the human tissues are not readily accessi-
ble for transcriptomic studies. Our results demonstrate that combining
human genetic, epigenomic andmouse expression data can provide ad-
ditional fine-mapping resolution at GWAS loci. As a proof-of-principle,
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we functionally tested and validated a variant in LDwith a lipid sentinel
SNP that interferes with the binding of the FOXA transcription factors
and is located near a FOXA2 transcriptional target gene as determined
by the transcriptomic characterization of Foxa2−/− mouse livers. Our
twomethods, applied individually or together, should be broadly appli-
cable to other human complex traits and diseases.

2. Results

2.1. Enrichment analysis

For this study, we obtained from the ENCODE Project all DNAseI
hypersensitive sites (DHS) and ChIP-seq peaks from HepG2, which are
hepatoblastoma cells that have been extensively used to study lipid
metabolism. For comparison, we also analyzed the same data in the
three tier 1 ENCODE cell lines: B-lymphoblastoid cells GM12878,
erythroleukemia cells K562 and human embryonic stem cells H1-hESC.
In this article, we use the term “epigenomic annotation” to refer to any
DHS or ChIP-seq peak reported by the ENCODE Project in these four
cell lines. To quantify the overlap between ENCODE epigenomic annota-
tions that mark regulatory DNA sequences and individual SNPs at GWAS
loci, we counted epigenomic annotations in each cell line that overlap
the SNP and assessed significance using a simple enrichment analysis
framework. We considered variants in LD (r2 ≥ 0.8, European-ancestry
individuals from the 1000 Genomes Project) with the GWAS sentinel
SNPs and thenused 5000matched sets ofmarkers to assess the statistical
significance of the enrichment (seeMethods section and Supplementary
Fig. 1).

Applying this approach to 95 lipid loci, we found enrichment of DHS
and most histone marks associated with transcription regulation. The
enrichment was stronger in HepG2 cells than in the three other cell
lines analyzed: 70% of marks (7 of 10) had enrichment P b 0.0002 for
HepG2, whereas the corresponding proportions for GM12878, K562
and H1-hESC were 20%, 50% and 20%, respectively (Supplementary
Table 1). This result is consistentwith previous reports that used similar
or complementary strategies, and emphasizes thatmost functional lipid
variants identified by GWAS may exert their effect on phenotypic
variation through the regulation of gene expression [8–10,16–18,23,
26,29,32].

2.2. Integrating human eQTL data

A large meta-analysis of genome-wide association results for lipid
levels highlighted variants at 24 of 95 lipid loci that are eQTL in
human liver at P b 5 × 10−8 [25,28]. Given our enrichment results, we
reasoned that the specific causal variant(s) at each of these eQTL should
be either the sentinel SNP itself or a marker in strong LD with it, and
marked by epigenomic annotations in HepG2 cells. Because the pres-
ence or absence of epigenomic annotations at markers within the
same locus should be independent of LD between them, ENCODE data
could help prioritize functional variants even if they are perfectly corre-
lated (a limitation of the genetic approach in fine-mapping GWAS loci).

The simplest strategy to combine epigenomic annotations and DNA
polymorphisms is to count the number of DHS and ChIP-seq peaks that
physicallymap in the human genome at the sameposition as DNApoly-
morphisms. Our hypothesis is that the best functional candidate variant
at an eQTL lipid locus should have the highest number of overlaps with
epigenomic annotations in HepG2, thus allowing discrimination be-
tween variants in strong LD. Obviously, this one causal variant-one
locus hypothesis would not be valid if there is evidence of indepencent
association signals or in the presence of several causal variants in strong
LD, as recently proposed in the genomic context of super-enhancers [7,
14,22]. However, under the several causal variants-one locusmodel, our
framework might still identify at least one of the potential functional
variants. For this analysis, we used all DHS and histone mark peaks;
we also included ChIP-seq data for all available transcription factors
since most of them were examined specifically in hepatocytes or are
general activators or repressors of transcription without a clear cell- or
biological pathway-specificity. Importantly, epigenomic annotations
are biologically correlated as many mark the same chromatin state
(e.g. promoters, enhancers) [12]. However, they also each provide
experimental evidence that a genomic region is transcriptionally impor-
tant. In addition, the accumulation of DHS and ChIP-seq peaks from
different experiments (and for ENCODE, different laboratories) at a
given position in the genome decreases the likelihood of false positives.
For these reasons, we treated all DHS, histone marks and transcription
factors ChIP-seq data from ENCODE HepG2 independently (including
technical replicates when available) and used them to annotate SNPs.
Merging technical replicates to only analyze intersecting peaks had no
significant impact on the results.

Results from this analysis are summarized in Table 1. At 19 of the 24
eQTL, the variant with the highest number of overlaps with ENCODE
epigenomic annotations in HepG2 was different than the reported sen-
tinel lipid SNP. The candidate SNPs prioritized by the ENCODEdatawere
also on average closer, although not significantly, to the transcription
start site(s) of the eQTL gene(s) than the sentinel lipid SNPs (78 ± 82
vs. 88 ± 93 kilobases (kb)), but still sufficiently far to suggest an influ-
ence on enhancer as opposed to promoter activities.We performed a re-
ceiver operating characteristic (ROC) curve analysis to determine the
number of overlapping epigenomic annotations that maximize both
sensitivity and specificity of finding candidate SNPs at eQTL. We com-
pared the number of epigenomic annotations for each SNP within the
24 eQTL with the number for each SNP in the 71 non-eQTL, focusing
on the SNP with the highest number of epigenomic annotations in
each locus. At a threshold of 16 ovelapping epigenomic annotations,
the area under the curve (AUC) is 0.618, the sensitivity 67% and the
specificity 61%. If a SNP has ≥16 epigenomic annotations in HepG2, it
is more likely to be located at an eQTL in liver (Fisher's exact P = 0.03,
odds ratio and 95% confidence interval = 3.1 [1.1–9.6]). Using a thresh-
old of 16 epigenomic annotations, we found a functional candidate SNP
for 16 of the 24 lipid and gene expression levels loci (bold in Table 1).
For each of the 16 loci, we list all SNPs in strong LD (r2≥ 0.8) that overlap
with ≥16 epigenomic annotations in Supplementary Table 2.

As a positive control, we evaluated the priority of rs12740374, a SNP
near SORT1 previously proposed to be a causal lipid variant at this locus
by interfering with binding of C/EBP transcription factors [20]. At the
SORT1 locus, we identified rs12740374 as the most likely functional
regulatory variant based on 44 epigenomic annotation overlaps in
comparison with 23 overlaps for the second most likely SNP (empirical
P= 0.048, calculated using the two variantswith the highest number of
annotations in each of the 5000 matched sets of 95 SNPs) and 13 over-
laps for rs629301, the sentinel lipid SNP (Fig. 1A). Another promising
example is at the NFATC3 locus. The sentinel lipid SNP rs16942887
that is associated with NFATC3 expression levels in human livers is
located 191 kb upstream of its transcription start site. The highest
priority candidate SNP at the locus in our analysis, rs7188085, has 81
epigenomic annotation overlaps in HepG2 (vs. 20 for rs16942887) and
is located only 5.3 kb upstream of NFATC3 (Fig. 1B). This variant and
many others presented in Table 1 are strong functional candidates.

2.3. Combining ENCODE and mouse transcriptomic data

Despite a very strong enrichment of epigenomic annotations corre-
lated with transcriptional regulation (Supplementary Table 2), only
36% of the 95 loci associated with lipid levels in humans were reported
to harbor eQTL variants [28]. Many factors could explain this observa-
tion: transcriptomic profiling was performed in the wrong tissues, the
genotypic effect on gene expression was too weak to be detected, the
transcripts of interest were not measured or were undetectable, etc.

One alternative to gene profiling in human samples is to use the
mouse, where the relevant tissues are readily accessible, and assume
that transcription factor homologs will target a large set of overlapping



Table 1
Overlaps of epigenomic annotations fromENCODEHepG2 and sentinel lipid SNPs associatedwith gene expression levels in human livers. For each sentinel lipid SNP, we identified SNPs in
linkage disequilibrium (r2 ≥ 0.8, European populations from the 1000 Genomes Project) and counted the number of overlaps with ENCODE peaks for all DNAse I hypersensitive sites and
ChIP-seq data available. ENCODE top candidate SNPs with ≥16 epigenomic annotation overlaps are in bold (see text for details). TSS, transcription start site; bp, base pairs. Human liver
eQTL data from [25,28].

Sentinel
lipid SNP

Chr:Position
(hg19)

Transcript(s)
associated with
genotypes at the
sentinel lipid SNP in
human livers

ENCODE top candidate SNP
(in LD with sentinel lipid
SNP; highest number of
epigenomic annotation
overlaps)

Chr:Position
(hg19)

Number of
overlapping
ENCODE
epigenomic
annotations

Distance
between
ENCODE top
candidate SNP
and gene TSS
(bp)

Distance
between
sentinel lipid
SNP and gene
TSS (bp)

Distance between
sentinel lipid SNP
and ENCODE top
candidate SNP
(bp)

rs12027135 Chr1:25,775,733 RHCE rs9438904 Chr1:25,756,860 46 9497 28,370 −18,873
RHD −157,880 −176,753
TMEM50A −92,072 −110,945
TMEM57 527 −18,346

rs2131925 Chr1:63,025,942 ANGPTL3 rs631106 Chr1:62,901,807 47 161,379 37,244 −124,135
DOCK7 −252,232 −128,097

rs629301 Chr1:109,818,306 CELSR2 rs12740374 Chr1:109,817,590 44 −24,950 −25,666 −716
PSMA5 −151,480 −150,764
PSRC1 −8200 −7484
SORT1 −122,973 −122,257
SYPL2 191,509 190,793

rs1260326 Chr2:27,730,940 IFT172 rs780094 Chr2:27,741,237 23 28,666 18,369 10,297
rs13107325 Chr4:103,188,709 SLC39A8 rs13107325 Chr4:103,188,709 0 −77,946 −77,946 0
rs9488822 Chr6:116,312,893 FRK rs9488822 Chr6:116,312,893 4 −69,028 −69,028 0
rs10128711 Chr11:18,632,984 SPTY2D1 rs7943121 Chr11:18,656,062 49 42 −23,036 23,078
rs174546 Chr11:61,569,830 FADS1 rs174538 Chr11:61,560,081 49 −24,448 −14,699 −9749
rs11220462 Chr11:126,243,952 ST3GAL4 rs2066985 Chr11:126,251,286 5 22,024 29,358 7334
rs7134594 Chr12:110,000,193 MMAB rs10161126 Chr12:110,042,348 17 30,990 −11,165 42,155
rs8017377 Chr14:24,883,887 NYNRIN rs72694393 Chr14:24,874,193 9 −6202 −15,896 −9694
rs2929282 Chr15:44,245,931 CKMT1A rs4270152 Chr15:44,224,668 5 −239,585 −260,848 −21,263
rs1532085 Chr15:58,683,366 ALDH1A2 rs2043085 Chr15:58,680,954 4 322,833 325,245 −2412

LIPC 43,220 40,808
rs11649653 Chr16:30,918,487 VKORC1 rs11640961 Chr16:30,979,818 4 −126,458 −187,789 61,331
rs16942887 Chr16:67,928,042 NFATC3 rs7188085 Chr16:68,113,873 81 5395 191,226 185,831
rs11869286 Chr17:37,813,856 PERLD1 rs881844 Chr17:37,810,218 33 −34,092 −30,454 −3638
rs7206971 Chr17:45,425,115 TBKBP1 rs4793978 Chr17:45,698,175 18 74,454 347,514 273,060
rs7241918 Chr18:47,160,953 LIPG rs7239867 Chr18:47,164,717 32 −76,291 −72,527 3764
rs7255436 Chr19:8,433,196 ANGPTL4 rs10413136 Chr19:8,452,879 16 −23,869 −4186 19,683
rs439401 Chr19:45,414,451 APOC4 rs584007 Chr19:45,416,478 31 29,016 31,043 2027
rs386000 Chr19:54,792,761 LILRA3 rs386000 Chr19:54,792,761 2 −11,460 −11,460 0
rs2277862 Chr20:34,152,782 CEP250 rs2104417 Chr20:34,127,871 25 −84,649 −109,560 −24,911

CPNE1 −124,988 −100,077
rs6065906 Chr20:44,554,015 PLTP rs1057208 Chr20:44,563,007 49 22,004 13,012 8992
rs181362 Chr22:21,932,068 UBE2L3 rs2266959 Chr22:21,922,904 18 −886 −10,050 −9164
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genes in both species. In particular, we tested the hypothesis that the
disruption of specific transcription factors in mouse livers could help
identify functional lipid genes and variants. First, we performed an
enrichment analysis of all the ENCODE HepG2 ChIP-seq transcription
factor data over the sentinel and correlated SNPs at the 95 lipid loci
and identified ten transcription factors that preferentially bind to
these regions: CEBPB, ELF1, FOXA1, FOXA2, HEY1, HNF4A, HNF4G, MBD4,
MYBL2, and NFIC (Supplementary Table 3). This enrichment was repro-
ducible across technical replicates. These transcription factorsmay define
regulatory networks that are important to control lipid metabolism in
humans. Of particular interest, we saw an enrichment for three families
of transcription factors expressed in the liver and previously implicated
in lipid metabolism: CEBPB, FOXA1 and FOXA2, and HNF4A. Second, we
identified publicly available transcriptomic profiles in livers of control
mice and liver-specific knockout animals for Foxa1 and Foxa2 [3], and
Hnf4a [5]; unfortunately, such data was not available for Cebpb. For
each of these conditional gene knockout strains, we retrieved the list of
mouse genes whose expression in liver was significantly changed when
compared to control animals: 385, 1009 and 1179 genes for Foxa1,
Foxa2 and Hnf4a, respectively (see Methods section). Third, we searched
if any of the human homologs of these target genes were located within
an arbitrary window defined as 250 kb on each side of the 95 sentinel
lipid SNPs. For FOXA2, we found ten target genes located within nine of
the 95 lipid loci; all but one of these loci contain at least one FOXA2
ChIP-seq peak in HepG2 (Table 2 and Supplementary Table 3). Results
were similarly encouraging forHNF4A: there are 20 transcriptional target
genes located at 17 of the 95 lipid loci, and for 14 of these 17 loci, there is
at least one annotated HNF4A ChIP-seq peak in HepG2 (Table 2 and
Supplementary Table 3). Because we demonstrated a strong statistical
enrichment of FOXA2 and HNF4A ChIP-seq peaks at the human lipid
loci, and because we focus our query on genes modulated by the disrup-
tion of these transcription factors in mouse livers, we argue that the
genes listed in Table 2 are strong biological candidates for influencing
lipid levels in humans. Our screen re-identified genes previously impli-
cated in lipid metabolism, such as SORT1 and GALNT2, but also other
genes with unanticipated functions in regulating lipid levels (Supple-
mentary Table 3) [15,20]. There were no FOXA1 target genes among
these genomic regions, perhaps consistent with the previous finding
that FOXA1 is preeminently involved in cell cycle regulation [3].

2.4. Finding and characterizing potential functional variants

Our analysis presented in Table 2 also allowed us to try to predict
functional variants. Indeed, if a sentinel lipid SNP (or an LD proxy) over-
laps a FOXA2 or HNF4A ChIP-seq peak inHepG2 and disrupts a predicted
binding site for these transcription factors, it is likely to be biologically
relevant. We queried the HaploReg database and found that four SNPs
disrupted binding motifs for FOXA2 and HNF4A (Table 2: rs3776702
and rs4969182 for FOXA2; rs838882 and rs12185764 for HNF4A) [30].
Many of the loci listed in Table 2 do not contain SNPs that disrupt
predicted FOXA2 or HNF4A binding sites. This is consistent with results
from the ENCODE Project that showed that ChIP-seq can identify



Fig. 1. ENCODEHepG2 epigenomic annotations at the (A) SORT1 and (B) NFATC3 lipid loci. For the sentinel lipid and eQTL SNPs (SORT1: rs629301;NFATC3: rs16942887) and their linkage
disequilibrium proxies (r2 ≥ 0.8, European populations from 1000 Genomes Project), we counted the number of overlaps with peaks from HepG2 DNase I hypersensitive sites, histone
marks or transcription factor binding ChIP-seq data. For both loci, the SNP with the highest number of epigenomic annotations is different than the published sentinel SNP.
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numerous and robust transcription factor peakswith no consensus bind-
ing motif in the underlying DNA sequence [21,31]. In the absence of
canonical binding sites, it is impossible to predict the effect of SNPs
on transcription factor binding; this requires functional validation.
Therefore, many of the variants listed in Table 2 might be functional
even if they reside in FOXA2 or HNF4A ChiP-seq peaks that do not con-
tain canonical binding motifs.

Finally, we sought to functionally validate one of our predictions. We
selected rs4969182, which is in LDwith the sentinel lipid SNP rs4129767
(r2= 0.96), overlaps with a FOXA2 peak in HepG2 and is located 171 kb
away from the apoptosis-related gene BIRC5, a transcriptional target of
Foxa2 in mouse livers (Table 2). rs4969182 is a C/T bi-allelic variant,
and the C-allele disrupts the motif recognized by FOXA transcription
factors. Using reporter assays in HepG2 cells, we showed that the DNA
sequence surrounding rs4969182 has enhancer activity, and that
the T-allele recognized by FOXA2 shows significantly increased tran-
scriptional activity compared to the C-allele (Fig. 2A, P = 2.6 × 10−5

and P=5.0 × 10−6 in the forward and reverse orientation, respectively).
Next, using electrophoretic mobility shift assays (EMSA), we tested if
alleles of rs4969182 differentially affected DNA binding to nuclear
proteins. Our results showed that proteins fromHepG2 nuclear extracts
bind probes containing either the C- or the T-allele, but that binding
is stronger for the T-allele-containing probe (Fig. 2B). Competition of
T-allele-containing labeled probe with excess unlabeled probe with
the T-allele more efficiently competed away allele-specific bands than
excess unlabeled probe with the C-allele, providing support for allelic
differences in protein-DNA binding (Fig. 2B). Antibodies against
FOXA1 and FOXA2 appear to weaken the probe–FOXA interaction but
did not supershift the protein–probe complexes (Fig. 2B). Other exam-
ples exist of EMSA experiments in which antibodies appear to impair
binding without causing a clear supershift of the complex [20].

3. Discussion

Characterization of the epigenome by the ENCODE Project provides
a framework to functionally annotate non-coding SNPs identified
by GWAS. Based on the observation that GWAS SNPs are enriched for
chromatin marks linked to transcriptional regulation, we designed
two novel strategies that integrate gene expression profiling with
epigenomic characterization. We used SNPs associated with lipid levels
as a test set because the large number allows us to derive meaningful
statistics and also because relevant cells and tissues are characterized.
First, we showed that at eQTL loci, simply counting the number of
epigenomic annotations that overlapwith associated SNPs can improve
fine-mapping resolution. This is particularly useful to distinguish
markers in strong LD, such as SNPs at the SORT1 locus (Fig. 1A). Second,



Table 2
Identification ofHNF4A and FOXA2 potential regulatory variants at lipid loci. For each of these two transcription factors, we identified target genes inmouse livers, and then searched if the
human homologs of these target geneswere locatedwithin a 500 kilobasewindowaround the 95 sentinel lipid SNPs. For the lipid loci that contain at least one target gene,we then query if
the SNPs (or linkage disequilibrium proxies) overlappedwith corresponding ENCODEChIP-seq peaks and disrupted predicted binding sites. Two SNPs for eachHNF4A and FOXA2 (in bold)
met all these criteria.

A-HNF4A

Sentinel lipid SNP Chr:Position (hg19) HNF4A target gene(s) Is there a HNF4A ChIP-seq
peak at the locus?

SNPs in LD with sentinel lipid SNP that overlap with
ENCODE HNF4A peaks (Do they disrupt predicted
HNF4A binding sites?)

rs4846914 Chr1:230,295,691 GALNT2 Yes rs4846913 (No)
rs2144300 (No)

rs1260326 Chr2:27,730,940 FNDC4, SLC30A3 No
rs1800562 Chr6:26,093,141 SLC17A3, HIST1H4D, HIST1H4F No
rs17145738 Chr7:72,982,874 MLXIPL Yes rs34060476 (No)
rs2081687 Chr8:59,388,565 UBXN2B No
rs11136341 Chr8:145,043,543 NRBP2 No
rs7134594 Chr12:110,000,193 MMAB, MYO1H Yes rs10744826 (No)

rs10161126 (No)
rs1169288 Chr12:121,416,650 HNF1A No
rs4759375 Chr12:123,796,238 SETD8 Yes rs10846506 (No)
rs838880 Chr12:125,261,593 BRI3BP Yes rs838881 (No)

rs838882 (Yes)
rs838884 (No)

rs16942887 Chr16:67,928,042 DUS2L, PSMB10 Yes rs7188085 (No)
rs2107369 (No)
rs8044328 (No)

rs4420638 Chr19:45,422,946 BCAM, PVRL2 No
rs6029526 Chr20:39,672,618 PLCG1 No
rs6065906 Chr20:44,554,015 WFDC3 Yes rs6065905 (No)

rs12185764 (Yes)

B-FOXA2

Sentinel lipid SNP Chr:Position (hg19) FOXA2 target gene(s) Is there a FOXA2 ENCODE
peak at the locus?

SNPs in LD with sentinel lipid SNP that overlap with
ENCODE FOXA2 peaks (Do they disrupt predicted
FOXA2 binding sites?)

rs629301 Chr1:109,818,306 SORT1 Yes rs7528419 (No)
rs12740374 (No)
rs660240 (No)

rs12328675 Chr2:165,540,800 COBLL1 Yes rs7607980 (No)
rs2290159 Chr3:12,628,920 PPARG Yes rs60448371 (No)

rs55762590 (No)
rs6450176 Chr5:53,298,025 ARL15 Yes rs6889847 (No)

rs6876198 (No)
rs3776712 (No)
rs1541681 (No)
rs1541680 (No)
rs3776707 (No)
rs3776706 (No)
rs3776705 (No)
rs3776703 (No)
rs3776702 (Yes)

rs1800562 Chr6:26,093,141 SLC17A3 Yes rs115740542 (No)
rs1169288 Chr12:121,416,650 P2RX7 Yes rs6489786 (No)

rs1169288 (No)
rs7206971 Chr17:45,425,115 ITGB3 Yes rs4793978 (No)

rs11079784 (No)
rs4129767 Chr17:76,403,984 BIRC5 Yes rs4969182 (Yes)
rs181362 Chr22:21,932,068 HIC2, SDF2L1 No
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in the absence of human eQTL information, or to complement such
datasets, we used gene expression profiling in the mouse to prioritize
candidate functional genes, and subsequently candidate functional
variants. We reasoned that if a transcription factor binds preferentially
at lipid loci (ENCODE ChIP-seq data), disruption of the mouse homolog
could identify target genes that may be important for lipid levels varia-
tion in humans. Indeed, although it is known that transcription factors
from different species bind different DNAmotifs [27], the transcription-
al target genes are often conserved across species [4,6]. This strategy
allowed us to highlight the role of the FOXA2 andHNF4A transcriptional
networks in lipid metabolism. Importantly, we validated one of our
predictions experimentally: a lipid sentinel SNP located 171 kb from
BIRC5, a FOXA2 target gene in the mouse liver, is in LD with a marker
that interfereswith FOXA2 binding andmodulates the enhancer activity
of the DNA sequence (Fig. 2).We did not validate whether BIRC5 plays a
role in lipid metabolism; there are other potential candidate genes at
the locus, although none are FOXA2 target genes based on the mouse
data. Other candidates include PGS1, a gene involved in the biosynthesis
of the anionic phospholipids phosphatidylglycerol and cardiolipin.

Fine-mapping may sometimes point to a candidate functional gene
that will be different than what would be expected based on the
known biology of the genes located within the locus. We have such an
example in our analysis of eQTL data from human livers. rs16942887
is associated with HDL-cholesterol levels in humans [28], and is located
46 kb from LCAT, which encodes an important enzyme involved in cho-
lesterol transport. Whereas common knowledge would suggest LCAT as
the likeliest causal gene at the locus, genotypes at rs1692887 are associ-
ated with expression levels of NFATC3 in human livers, a gene located



Fig. 2.Allelic differences in regulatory activity at rs4969182. (A) Differential transcription-
al enhancer reporter activity inHepG2 cells. The T-allele, found in FOXA consensus binding
motifs, showed significantly increased luciferase activity compared to C-allele in both ori-
entations and with respect to a minimal promoter vector. Error bars represent standard
error of five independent clones for each allele. Results are expressed as fold change
compared to empty vector control. P-values were calculated by a two-sided t-test.
(B) Electrophoreticmobility shift assay (EMSA) using HepG2nuclear extract shows differ-
ential protein-DNA binding of rs4969182 alleles. The probe containing the T-allele shows
increased protein binding (arrowA) compared to the probe containing the C-allele. Excess
unlabeled specific probe containing the T-allele (T-comp)more efficiently competed away
allele-specific binding than the unlabeled C-allele (C-comp). Incubation with FOXA1 and
FOXA2 antibody reduced the DNA–protein complex (arrow). To enhance visualization of
protein complexes, free biotin-labeled probe is not shown.
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191 kb downstream. Furthermore, epigenomic characterization of this
locus in HepG2 highlights rs7188085, a SNP in strong LD with
rs1692887 (r2 = 0.85) and located only 5.3 kb from the NFATC3 tran-
scription start site (Fig. 1B).NFATC3 encodes a gene involved in immune
responses. LCAT is critical for lipid metabolism in humans, but there is
currently no functional evidence that suggests that the SNPs at this
locus mediate their effect on HDL-C levels through LCAT itself, NFATC3,
or both.

Several studies have proposed to use epigenomic annotations to pri-
oritize DNA sequence variants at GWAS loci for functional testing [8–10,
16–18,23,26,29,32]. We extended these methods and also developed a
novel paradigm by proposing to integrate mouse transcriptomic data
as an additional filter to prioritize candidate functional variants and
genes. As with the other bioinformatic methods, ours also have limita-
tions that are inherent to the type of data available. For instance, geno-
mic regions that are difficult to sequence using next-generation DNA
sequencers are less likely to be annotated by the ENCODE Project and
might thus escape detection using such methods. Equally important is
the fact that most epigenomic marks catalogued by the ENCODE Project
are associated with transcriptional activation. Thus, functional genetic
variants that relieve transcriptional repression are less likely to be
found using these strategies. Finally, if the transcription factors tested
by ChIP-seq do not have a mouse ortholog (unlikely since 99% of
human genes have a mouse equivalent [19]) or if the mouse knockout
models do not exist, our second strategy is not applicable.

In conclusion, we presented two simple strategies that combine
epigenomic and transcriptomic profiling to prioritize functional genes
and variants at GWAS loci. Thesemethods should be applicable to prior-
itize rare genetic variants as well because they rely on the annotation of
physical positions and are independent of allele frequency. The predic-
tions from our approaches, which are statistically supported through
enrichment analysis, are readily testable in the laboratory. These
methods should be applicable to characterize genetic markers associat-
ed with many complex diseases and traits, and in particular those relat-
ed to immune or hematological phenotypes as relevant tissues are
easier to access. Combining human genetic findings with epigenomic
characterization and gene expression data from mouse knockouts
offer an alternative solution, in particular when human tissues are not
accessible. Finally, as the repertoire of epigenomic annotations in vari-
ous human tissues continue to expand, we anticipate that our strategies
will become amenable to most human complex phenotypes.

4. Methods

4.1. ENCODE enrichment analysis

The enrichment pipeline strategy is summarized graphically in Sup-
plementary Fig. 1. For each epigenomic annotation, peak coordinates
were identified using software developed for the ENCODE Project
(http://encodeproject.org/ENCODE/encodeTools.html). We obtained
epigenomic annotations in the form of peak calls mapped onto the
human genome (build hg19) directly from the ENCODE Project website
(accessed June 2012). In total, we considered in our analysis 116, 147,
111, 177 different epigenomic annotations files for HepG2, GM12878,
H1-hESC andK562, respectively. To quantify the enrichment of SNPs as-
sociated with a specific complex disease or trait, we developed a four
step strategy: First, we generated sets of variants (with replacement)
that are matched with the sentinel variants based on allele frequency
(±4%), gene proximity (±100 kb) and linkage disequilibrium (LD; all
SNPs within the same set have r2 ≤ 0.5). For our analysis of the lipid
loci, we generated 5000 sets of 95 SNPs using information from
European individuals from the 1000 Genomes Project. Second, for
each variant in the seed and matched sets, we retrieved all other
variants in LD (r2 ≥ 0.8) using the 1000 Genomes Project European
population genotypes and the PLINK software [24]. Third, we annotated
all variants and their LD proxies for overlap with specified epigenomic
annotations. Finally, we assessed statistical enrichment by computing
empirical P-values for each epigenomic annotation by counting the
number ofmatched setwithmore SNP-epigenomic annotation overlaps
than found in the set of sentinel variants. We provide a step-by-step
description of our methods in the Supplementary Information.

4.2. Gene expression datasets

Human liver eQTL results (P≤ 5 × 10−8) were available from previ-
ous reports [25,28]. The list of genes differentially expressed in liver-
specific knockout Foxa1−/− and Foxa2−/− mice were obtained from a
previous report (fold-change ≥ ±1.5, false discovery rate = 15%) [3].
To identify the list of genes differentially expressed in Hnf4a−/− liver
mice compared to wild-type animals, we recovered the corresponding
dataset from NCBI Gene Expression Omnibus (GSE34581) [5] and ana-
lyzed the data with the GEO2R module, correcting for multiple testing
using the Benjamini & Hochberg procedure (adjusted P ≤ 0.05). We

http://encodeproject.org/ENCODE/encodeTools.html
image of Fig.�2
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converted mouse gene symbols to human gene symbols assuming a
one-to-one homolog (Supplementary Information).

4.3. Luciferase transcriptional reporter assays

HepG2 hepatocellular carcinoma cells were cultured in MEM-alpha
(Invitrogen) supplemented with 10% FBS, 1 mM sodium pyruvate and
2 mM L-glutamine. A 181 bp fragment (hg19 chr17: 76,392,913-
76,393,093) surrounding the SNP rs4969182 was PCR-amplified using
primers 5′-TGGAACACAGCCACACTCAT-3′ and 5′-
ACTTGCACTCAGGTCCGTTT-3′ from DNA of individuals homozygous
for either allele and cloned in both orientations into themultiple cloning
sites of the minimal promoter-containing firefly luciferase reporter vec-
tor pGL4.23 (Promega, Madison, WI). Fragments are designated as ‘for-
ward’ or ‘reverse’ based on their orientation in the genome with
respect to the BIRC5 coding sequence. Five independent clones for each
allele for each orientation were isolated, verified by sequencing and
transfected in duplicate into HepG2 cell line. Luciferase assays were per-
formed as previously described [11].

4.4. Electrophoretic mobility shift assay (EMSA)

Nuclear cell extract was prepared fromHepG2 cells using the NE-PER
nuclear and cytoplasmic extraction kit (Thermo Scientific) as described
[11]. 17 base-pair oligonucleotides were designed to the sequence sur-
rounding rs4969182 alleles: Sense 5' biotin-ATATTTAC[T/C]CTCTGGCC-
3', antisense 5'-biotin-GGCCAGAG[G/A]GTAAATAT-3' (SNP alleles in
bold). For supershift assays, before adding labeled probe, 2 μg of
polyclonal antibody against FOXA1 (ab23738; from ABCAM) or 4 ug of
FOXA2 (ENCODEChIP-seq antibody, SC-6554X; fromSanta Cruz Biotech-
nology) was added to the binding reaction and incubated for 25 min.
EMSAs were carried out on a second independent day and yielded
comparable results.
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