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Sickle-cell disease 2

Fetal haemoglobin in sickle-cell disease: from genetic 
epidemiology to new therapeutic strategies
Guillaume Lettre, Daniel E Bauer

Sickle-cell disease aff ects millions of individuals worldwide, but the global incidence is concentrated in Africa. The 
burden of sickle-cell disease is expected to continue to rise over the coming decades, adding to stress on the health 
infrastructures of many countries. Although the molecular cause of sickle-cell disease has been known for more than 
half a century, treatment options remain greatly limited. Allogeneic haemopoietic stem-cell transplantation is the 
only existing cure but is limited to specialised clinical centres and remains inaccessible for most patients. Induction 
of fetal haemoglobin production is a promising strategy for the treatment of sickle-cell disease. In this Series paper, 
we review scientifi c breakthroughs in epidemiology, genetics, and molecular biology that have brought reactivation of 
fetal haemoglobin to the forefront of sickle-cell disease research. Improved knowledge of the regulation of fetal 
haemoglobin production in human beings and the development of genome editing technology now support the 
design of innovative therapies for sickle-cell disease that are based on fetal haemoglobin.  

Introduction
Sickle-cell anaemia is a prototypical monogenic disorder 
caused by the autosomal recessive inheritance of an 
A→T transversion of the β-globin gene (βS [HBB]). The 
entire complex pathophysiological cascade of sickle-cell 
anaemia, including haemolysis, anaemia, ischaemia, 
infl ammation, susceptibility to infection, and organ 
injury, emanates from this single mutation. Although 
individuals homozygous for βS have severe disease, 
prevalence of this allele has risen to extremely high 
levels in sub-Saharan Africa, the Arabian peninsula, 
and central India because people who are heterozygous 
for the allele are partly protected from malaria.1 The 
mutant βS globin peptide, carrying the characteristic 
Glu to Val aminoacid substitution, renders sickle 
haemoglobin susceptible to polymerisation when 
deoxygenated. This molecular alteration predisposes 
erythrocytes to adopt a sickled conformation, as fi rst 
observed on blood fi lms more than 100 years ago.2 
Sickle-cell disease refers to a set of sickling disorders 
that share an underlying βS mutation, including 
homozygous βS (sickle-cell anaemia) and various 
compound heterozygous disorders such as βSβ0 and βSβ+ 
(the sickle/β-thalassaemias) and βSβC (haemoglobin SC 
sickle-cell disease). Despite the apparent straight-
forward aetiology of sickle-cell disease, its clinical 
manifestations are heterogeneous, with some 
individuals severely aff ected and others avoiding serious 

consequences—suggestive of a key role of disease 
modifi ers. Chief among these modifying factors is the 
concentration of residual fetal haemoglobin.

Before consideration of the clinical, epidemiological, 
and molecular genetic observations indicative of the 
role of fetal haemoglobin in modulation of sickle-cell 
disease, we will discuss the various forms of 
haemoglobin (fi gure 1). Haemoglobin, the oxygen-
carrying metallo protein constituent of erythrocytes, is a 
tetramer of globins, each of which contains an iron-
containing haem moiety. All functional haemoglobins 
are formed by a tetramer of two α-like and two β-like 
globins. Both α-globin and β-globin genes are encoded 
from a cluster of similar genes, the α-like and β-like 
globins on chromosome 16 and 11, respectively. The 
globin clusters undergo developmental regulation: 
during the latter two trimesters of gestation in human 
beings, fetal haemoglobin is the prevalent haemoglobin. 
Only after birth, in a process primarily driven by 
regulation of gene expression, is fetal haemoglobin 
replaced by adult haemoglobin. The β-globin gene 
cluster on chromosome 11 includes fi ve β-like genes: 
ε-globin (expressed early in the fi rst trimester), Gγ-
globin, Aγ-globin (both of which are expressed 
throughout the remainder of gestation), δ-globin, and 
β-globin (the minor and major β-like globin genes 
expressed after birth). Whereas fetal haemoglobin 
contains two α and two γ-globins (α2γ2), adult 
haemoglobin tetramer contains two α and two β-globins 
(α2β2). A residual amount of fetal haemoglobin remains 
in the adult stage (typically <1% of total haemoglobin) 
along with the major form (about 97%) and minor form 
of adult haemoglobin, HbA₂ (α2δ2; about 2%). Residual 
fetal haemoglobin is typically not evenly distributed 
among erythrocytes but concentrated in a subset of cells 
known as F-cells, in which about 20% of the total 
haemoglobin content is fetal haemoglobin.
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Natural history and epidemiology
Scientifi c breakthroughs often result from series of 
apparently unrelated fi ndings that ultimately lead to 
convergent conclusions. The recognition that fetal 
haemoglobin can ameliorate many of the symptoms in 
patients with sickle-cell disease is one clear example of 
this path to discovery. In 1948, Janet Watson, who was 
aware that newborn babies do not manifest sickle-cell 
disease complications until they reach about 6 months of 
age, made the seminal fi nding that erythrocytes of 
newborn babies with sickle-cell disease are relatively 
protected from sickling compared with adults or older 
infants.3 She presciently hypothesised that this protection 
in infants was due to the high concentration of fetal 
haemoglobin in circulating erythrocytes. A few years 
later, anecdotal reports described asymptomatic patients 
with sickle-cell disease who co-inherited a hereditary 
persistence of fetal haemoglobin (HPFH) phenotype.4 
HPFH is typically caused by either large deletions of the 
β-globin gene cluster or point mutations in the promoters 
of the γ-globin genes and is characterised by high 
concentrations of fetal haemoglobin throughout life. 
Finally, some populations with sickle-cell disease, notably 
patients from Saudi Arabia and the Indian subcontinent, 
were noted for having higher concentrations of fetal 
haemoglobin and a milder form of sickle-cell disease 
than patients of African ancestry.5,6 Although the view 
that sickle-cell disease is largely benign in patients of 
Arab-Indian descent has recently been challenged,7 many 
studies have described the relatively low prevalence and 
delayed onset of many sickle-cell disease complications, 
attributed in part to high fetal haemoglobin production 
into adulthood, in patients from this part of the world.5–9

The modern techniques of epidemiology have 
supported fetal haemoglobin as a strong modifi er of 
severity in sickle-cell disease. In the large prospective 
Cooperative Study of Sickle Cell Disease (CSSCD),10 
increased concentrations of fetal haemoglobin were 
independently associated with improved survival and 
decreased rates of painful crises,11 acute chest syndrome,12 
and osteonecrosis.13 The benefi cial eff ect of fetal 
haemoglobin on several complications related to sickle-
cell disease was also seen in toddlers and adolescents 
with the disease from the Jamaica sickle-cell disease 
birth cohort.14,15 Certain complications, such as priapism 
and stroke, were originally thought to be independent of 
fetal haemoglobin concentrations,16,17 although these 
negative results might simply represent a small number 
of clinical events and thus have limited statistical power 
to detect an eff ect. Surprisingly, although most patients 
with sickle-cell disease are born and live in Africa, few 
data exist on the possible role of fetal haemoglobin in 
ameliorating the severity of sickle-cell disease in African 
countries. This pronounced scarcity of information 
emphasises the need for a renewed academic interest in 
varying manifestations of sickle-cell disease in Africa 
where the worldwide disease burden predominates.

How does fetal haemoglobin inhibit sickling? The 
sickle haemoglobin polymer is a solid fi bre consisting 
of seven pairs of strands of sickle haemoglobin 
tetramers stacked atop of one other. Except for a slight 
helical twist, each pair of strands is almost identical at 
atomic resolution to the structure of the deoxygenated 
form of sickle haemoglobin determined by x-ray 
crystallography.18 The x-ray structure shows that the 
fi bre is stabilised by the hydrophobic β 6 Val of sickle 
haemoglobin on one strand binding to a hydrophobic 
patch at β 85–88 on the adjacent strand. γ haemoglobin 
has a Gln rather than a Thr at position 87, which 
renders this hydrophobic interaction weaker.19 
Consequently, fetal haemoglobin tetramers containing 
γ-chains have a much lower probability of 
copolymerising with the sickle haemo globin tetramers 
containing two βS peptides (fi gure 1). This structural 
analysis is in full agreement with both kinetic and 
equilibrium studies,20,21 the results of which show that 
mixtures of sickle haemoglobin and fetal haemoglobin 
form polymers much less readily than comparable 
mixtures of sickle haemoglobin and adult haemoglobin.
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Figure 1: Fetal haemoglobin and sickle-cell disease
(A) The predominant haemoglobin before birth is fetal haemoglobin (HbF; α₂γ₂) with a small contribution of 
adult haemoglobin (HbA; α₂β₂). After birth, only a small residual production of γ-globin remains, such that HbF 
makes a small contribution and HbA predominates in the total amount of haemoglobin. Sickle-cell disease, due 
to its βS mutation of β-globin, only manifests after birth once the contribution of HbF wanes. (B) Sickle 
haemoglobin (HbS) tetramers have a tendency to polymerise under deoxygenated conditions. The antisickling 
eff ect of HbF exceeds that of HbA since γ-globin has Gln rather than Thr at position 87 and thus a less 
hydrophobic patch for lateral interactions with Val 6 of the βS peptide. In cells co-expressing γ-globin and 
βS-globin, most of the γ-globin is incorporated into α2βSγ hybrid haemoglobin tetramers, which have an 
antisickling eff ect.
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Genetic regulation of fetal haemoglobin 
production
Although the switch from γ-globin to β-globin happens 
shortly after birth, most individuals continue to produce 
measurable amounts of fetal haemoglobin in adulthood. 
The concentrations of fetal haemoglobin are usually 
higher in patients with sickle-cell disease than in non-
aff ected adult individuals, principally because of the 
increased survival of F-cells (fi gure 2). No studies have 
estimated the heritability of fetal haemoglobin in sickle-
cell disease (panel), but the interindividual variation of 
the heritability is very high in the general population, 
with genetics explaining 60–90% of this variation.22,23 The 
β-globin locus was the fi rst chromosomal region that was 
shown to carry DNA sequence variants that aff ect the 
concentration of fetal haemoglobin, in the form of HPFH 
mutations (fi gure 3).25 The comparison of large deletions 
within the β-globin locus associated with higher fetal 
haemoglobin con centrations (deletional HPFH) with 
smaller deletions associated more modest increases in 
fetal haemoglobin concentration (δβ0-thalassaemia) has 

implicated sequences between the Aγ-globin and δ-globin 
genes as cis-acting determinants of γ-globin expression.26 
The association of small, naturally occurring deletions in 
the region between Aγ-globin and δ-globin loci, such as 
the Corfu deletion, with high fetal haemoglobin 
concentrations further supports this hypothesis.27 The 
fi ne-mapping of breakpoints of HPFH deletions 
identifi ed a 3∙5-kb genomic region within the β-globin 
gene cluster that seems to be important for γ-globin 
silencing (fi gure 3).28 This minimal region also includes 
single nucleotide polymorphisms (SNPs) that are 
strongly associated with variations in fetal haemoglobin 
concentration in patients with sickle-cell disease.29

After the initial characterisation of HPFH alleles, it 
took another 20 years and improvements in genomic 
technology to identify genomic regions outside of the 
β-globin locus that control the variation in fetal 
haemoglobin concentration. The fi rst hints came from 
linkage scans, which highlighted linkage peaks on 
chromosome 6p23, chromosome 8q, and chromosome 
Xp22.2.30–32 Unlike the linkage signals at 8q and Xp22.2, 
which have not been confi rmed independently, results 
for the 6p23 region were particularly convincing because 
multiple populations, including patients with sickle-cell 
disease, carried DNA sequence variants in that genomic 
region which were shown to have a strong eff ect on the 
variation of fetal haemoglobin concentration.33–36 In a 
targeted genetic association study, the signal at 
chromosome 6p23 was fi ne-mapped to the intergenic 
sequence between HBS1L and MYB.34 SNPs in this 
intergenic region interfere with the binding of key 
erythropoietic transcription factors (eg, GATA1, TAL1, 
KLF1) and modulate MYB expression (fi gure 4).37 These 
results, together with naturally occurring rare variants in 
MYB38 and functional results from primary human 
erythroid precursors in which MYB was inhibited,39 
strongly support MYB as a direct regulator of fetal 
haemoglobin in human beings.

Genome-wide association studies (GWAS) have 
revolutionised how geneticists tackle the diffi  cult problem 
of associating common DNA sequence variants (eg, SNPs) 
with complex human diseases or traits. GWAS led to the 
identifi cation of the BCL11A locus, fi rst in healthy 
Europeans and those with β-thalassaemia,36,40 then in 
patients with sickle-cell disease of African ancestry33,41,42 
and in patients of Asian ancestry with haemo  globin 
E/β-thalassaemia.43 BCL11A encodes a zinc-fi nger tran-
scription factor that had previously been investigated for a 
role in lymphocyte and neural development.44,45 Results of 
knockdown experiments in erythroid cells validated 
BCL11A as a negative regulator of γ-globin gene 
expression46 and showed that loss of BCL11A during 
embryogenesis prevented appropriate developmental 
silencing of γ-globin.47 Targeted deletion of BCL11A in the 
erythroid lineage rescued the phenotype of a murine 
sickle-cell disease model.48 The in-vivo role of BCL11A as a 
repressor of fetal haemoglobin production in human 
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Figure 2: Distribution of fetal haemoglobin concentration in patients with sickle-cell disease
181 participants assessed with GEN-MOD procedure carried no βS allele (HbAA), 600 participants had one βS allele 
(HbAS [sickle cell trait]), and 440 participants had two βS alleles (HbSS [sickle-cell anaemia]). The mean HbF 
concentration is 0·8% (SD 2·0) in patients with HbAA, 0·9% (0·8) in patients with HbAS, and 6·8 (5·2) in patients 
with sickle haemoglobins.
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beings was also confi rmed through the characterisation of 
rare large genomic deletions of sequences that include 
this locus. These patients with BCL11A haploinsuffi  ciency 
have an HPFH-like phenotype and neurodevelopmental 
alterations.49,50 The specifi city of the SNPs at BCL11A that 
are associated with fetal haemoglobin expression seems to 
be related to their location within an erythroid-specifi c 
enhancer (fi gure 4).51,52 Although few examples have been 
experimentally validated like BCL11A, cell type-specifi c 
enhancer disruption by common genetic variation seems 
to be a prevalent mechanism of human disease 
susceptibility.53

By contrast with most SNPs identifi ed in GWAS, which 
normally have a small eff ect on phenotypes, SNPs at the 
BCL11A, HBS1L-MYB, and β-globin gene cluster loci 
account for up to 50% of the heritable variation in fetal 
haemoglobin concentration in patients with sickle-cell 
disease.38 The same loci are associated with both fetal 
haemoglobin concentration and the fraction of F-cells,40,42 
suggesting that the mechanisms controlling the quantity 
and frequency of fetal haemoglobin production are 
tightly linked. Because of the robust phenotypic eff ect 
and the strong causal relation between fetal haemoglobin 
concentration (or F-cell number) and sickle-cell disease-
related complications, these SNPs are also associated 
with measures of the clinical severity of sickle-cell 
disease, including painful sickle-cell crises and 
hospitalisation rates.33,54,55 Improvements in the ability to 
prognosticate clinical severity is one goal of precision 
medicine in the context of sickle-cell disease. To increase 
predictive power, the remaining genetic factors that 
aff ect fetal haemoglobin production need to be identifi ed. 
One strategy is to increase the sample size of the GWAS 
of fetal haemoglobin through meta-analyses. So far, the 
largest GWAS for fetal haemoglobin in sickle-cell disease 
included fewer than 2000 patients, a very modest sample 
size in comparison with meta-analyses for other complex 
human phenotypes, which can include more than 
100 000 participants.56–58 Another possibility is to explore 
the contribution of rare genetic variants to the variation 
in fetal haemoglobin concentration. Because of their 
design, GWAS are not suitable study types for the 
investigation of this category of genetic variation. Next-
generation DNA sequencing, including whole-exome 
and whole-genome sequencing, now provides a 
comprehensive approach to investigate whether (and 
how) rare genetic variants aff ect fetal haemoglobin 
concentration and production.59 Targeted sequencing 
approaches have already established that rare genetic 
variants in MYB and KLF1 might be associated with 
increased fetal haemoglobin concentrations in 
adults.38,60–62 KLF1, a transcription factor with an 
expression profi le that is restricted to the erythroid 
lineage, has a broad role in coordinating appropriate 
regulation of genes required for terminal erythroid 
diff erentiation. In Chinese patients with β-thalassaemia, 
rare KLF1 missense mutations are associated with both 

increased fetal haemoglobin concentrations and a mild 
clinical course.61

Therapeutic induction of fetal haemoglobin 
production to treat sickle-cell disease
The association between high fetal haemoglobin 
concentration and a mild sickle-cell disease course 
suggests the potential to treat patients by reactivating 

Panel: Key concepts

Heritability
Heritability is the fraction of the observable (phenotypic) 
variation that is explained by genetic factors. For instance, 
the heritability for fetal haemoglobin is 60–90%; the 
remaining variation is explained by other factors such as the 
environment. Single nucleotide polymorphisms (SNPs) at 
BCL11A, HBS1L-MYB, and β-globin (HBB) explain about 50% 
of the heritability for fetal haemoglobin. The remaining 
heritability—often termed missing or hidden—is explained by 
unknown genetic factors.

Complex human diseases
The risk of developing a complex human disease is aff ected 
by genetic and non-genetic factors. For instance, the risk of a 
heart attack depends on a combination of genetic variants 
and environmental factors (eg, diet and smoking). By 
contrast with complex human diseases, simple or mendelian 
diseases are caused by mutations in a single gene 
(eg, sickle-cell disease, which results from mutations in 
the β-globin gene).

Linkage study
Linkage scans measure the cosegregation of genetic markers 
and phenotypes in large families to identify chromosomal 
segments that aff ect disease risk. Linkage studies have had 
only limited success in the context of complex human 
diseases, in part because disease risk conferred by segregating 
common variants is usually small.

Association study
Association studies measure the correlation between alleles 
and phenotypes (diseases or quantitative traits). 
Genome-wide association studies (GWAS) test for hundreds 
of thousands (or even millions) of variants for association 
with a phenotype of interest. GWAS have identifi ed more 
than 14 000 associations between SNPs and complex human 
phenotypes.

Genome editing
Genome editing refers to a set of techniques in which 
sequence-specifi c nucleases are used to alter genomic 
sequences at precise positions. DNA sequence specifi city 
stems from an engineered protein domain (in the case of 
meganucleases, zinc fi nger nucleases, and transcription 
activator-like eff ector nucleases) or a complementary guide 
RNA (in the case of the clustered regularly interspaced short 
palindromic repeats [CRISPR]-associated 9 [Cas9] nuclease). 
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fetal haemoglobin production. Clinical observations in 
the context of cancer therapy and bone marrow 
transplantation,63,64 as well as experiments in anaemic 
baboons,65 indicated that altered erythroid kinetics might 
result in increased expression of the γ-globin genes. 
Hydroxyurea, which blocks the cell cycle in S phase, has 
been shown to induce a robust production of fetal 
haemoglobin.66 Although the specifi c mechanisms by 
which hydroxyurea modulates the haemopoietic system 
are still a topic of debate, results of clinical trials67–69 have 
shown the effi  cacy of hydroxyurea in increasing fetal 
haemoglobin production, decreasing complications 
related to sickle-cell disease, and improving survival in 
children and adults with the disease. Hydroxyurea is 
generally well tolerated and shows reversible, dose-
dependent myelosuppression and minimal non-
haematological toxic eff ects. Findings of long-term 
studies of children and adults who received continuous 

treatment, with more than 15 years’ follow-up, show 
excellent safety profi les.70–72 Hydroxyurea is now the only 
drug approved by the US Food and Drug Administration 
and several European regulatory authorities to treat 
sickle-cell disease. Although patient-to-patient variation 
in response is seen, adults treated with hydroxyurea 
usually have a heterocellular increase in fetal 
haemoglobin concentration from about 5% at baseline to 
about 15%, and children can reach even higher 
concentrations of fetal haemoglobin, concordant with 
substantial clinical benefi ts. Nevertheless, this 
concentration of fetal haemoglobin is still lower than a 
threshold expected to completely prevent the com-
plications of sickle-cell disease, as would be seen in 
patients with sickle haemoglobin/HPFH, for whom 
about 30% of total haemoglobin is fetal haemoglobin, 
which, with a pancellular distribution, is fully 
protective.70,73 Identifi cation of novel compounds to 
robustly induce fetal haemoglobin in the context of 
sickle-cell disease remains a pressing challenge. 
Although beyond the scope of this review, novel fetal 
haemoglobin-inducing therapeutic strategies might have 
a benefi t not only in sickle-cell disease but also in 
β-thalassaemia, in which case γ-globin can substitute for 
absent β-globin.

Chromatin dynamics and fetal haemoglobin 
production
Advances in knowledge of the molecular mechanisms 
controlling globin gene expression raise hope for the 
development of novel pharmacotherapies to increase fetal 
haemoglobin concentration. Much of the understanding 
can be simplifi ed into two predominant mechanisms of 
gene regulation: fi rst, the eff ect of chromatin regulators; 
and second, the action of DNA-binding transcription 
factors. The developmental switch from fetal haemoglobin 
to adult haemoglobin, and thus from γ-globin to β-globin 
expression, is accompanied by biochemical changes at 
the globin gene cluster. These epigenetic changes include 
direct modifi cation of the DNA itself and of histones, 
around which DNA is wrapped (ie, the chromatin 
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Figure 3: Rare, naturally occurring deletions at the β-globin gene cluster suggest the presence of a putative silencer element between Aγ-globin and δ-globin
Common genetic variants associated with high concentration of fetal haemoglobin (HbF) are located within these intergenic sequences. This fi gure was adapted 
from Sankaran and Orkin (2013).24 LCR=locus control region. 
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Figure 4: Single nucleotide polymorphisms associated with fetal haemoglobin are located within erythroid 
enhancers and control the expression of MYB and BCL11A
(A) Alleles associated with high concentration of fetal haemoglobin are found within intergenic regulatory 
sequences (–84 and –71) between HBS1L and MYB and interfere with the binding of transcription factors, aff ect 
enhancer activity and promoter–enhancer communication, and correlate with reduced MYB expression. (B) At the 
BCL11A locus, alleles associated with high concentration of fetal haemoglobin disrupt intronic erythroid-specifi c 
enhancers (+55 and +62), aff ect transcription factors binding, and associate with low BCL11A expression. Because 
BCL11A is a repressor of γ-globin expression, this results in an increased production of fetal haemoglobin. 
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structure). For example, the γ-globin gene in adult 
erythroid cells, as compared with fetal erythroid cells, is 
associated with increased cytosine methylation, loss of 
surrounding active histone modifi cations (such as 
trimethylated lysine 36 on histone 3 [H3K36me3], 
acetylated lysine 9 on histone 3 [H3K9ac], and acetylated 
lysine 27 on histone 3 [H3K27ac]), and a decrease in 
chromatin accessibility.74–77 These biochemical changes 
are in line with the fi nding that DNA methyltransferase 
inhibition, either through chemical inhibitors, 
knockdown of DNA methyl transferase 1 (DNMT1) in 
human erythroid precursors, or Dnmt1 knockout in 
transgenic mice, results in derepression of fetal 
haemoglobin concentrations.78–80 This developmental 
chromatin profi le is also consistent with the 
understanding that histone deacetylase (HDAC) 
inhibitors, such as butyrate, can restore fetal-like histone 
acetylation around γ-globin and increase fetal haemo-
globin concentration. The hypothesis that specifi c 
inhibitors of HDAC1 and HDAC2 or next-generation 
DNA methylation inhibitors could be used to adjust fetal 
haemoglobin concentration while avoiding excess adverse 
consequences is being tested in ongoing eff orts.81,82

The nucleosome remodelling and deacetylase complex 
is a macromolecular protein structure that includes 
histone deacetylases, factors that recognise methylated 
DNA, such as MBD2, and chromatin remodelling factors, 
such as Mi2β. Inhibition of Mi2β, in particular, has potent 
eff ects on derepression of fetal haemoglobin production, 
consistent with an important role for the complex in 
maintaining γ-globin gene silencing.83 Histone 
methylation has emerged as a novel pathway for the 
induction of fetal haemoglobin production. LSD1 is a 
demethylase that targets methylated lysine 4 of histone 3 
(H3K4me; often associated with gene activation) and 
methylated lysine 9 of histone 3 (H3K9) (often associated 
with gene repression). Inhibition of LSD1 has been 
shown to increase fetal haemoglobin production in 
primary human erythroid precursors and transgenic 
mice.80,84–86 However, the eff ects do not seem to be 
associated with a clear pattern of increased methylation at 
the globin genes, are of variable effi  cacy, and might be 
diffi  cult to disentangle from inhibition of erythropoiesis 
or haemopoiesis. G9a is a histone methyltransferase that 
can deposit methyl groups onto H3K9, its inhibition has 
also been associated with increased expression of 
embryonic and fetal globin gene expression.87–89 Several 
additional chromatin regulators are implicated in globin 
gene expression, including the arginine methyltransferase 
PRMT5 and the NCoR, SIN3, and SWI/SNF complexes.80,90

The challenge for pharmacological manipulation of 
any chromatin regulator is to achieve a desirable 
therapeutic index. Many of the chromatin regulators are 
prevalent mediators of gene regulation that orchestrate 
appropriate expression of many genes across diverse 
cellular contexts. The ultimate eff ect of a chromatin 
regulator on fetal haemoglobin production might result 

both from direct modulation of globin gene control and 
from indirect eff ects, such as erythroid stress. The 
diffi  culty is therefore not only to fi nd a therapeutic 
perturbation that substantially increases fetal 
haemoglobin concentration, but to fi nd one that does not 
adversely aff ect erythrocyte development or other 
functions within and beyond the haemopoietic system. A 
related challenge is that none of the model systems fully 
recapitulate in-vivo human erythropoiesis and globin 
gene regulation, so defi nitive results of the potency and 
specifi city of candidate small molecules will be diffi  cult 
to obtain outside careful clinical trials. Although clinical 
trials of some drugs are ongoing (table), none of the 
completed trials has released results (we highly 
recommend that investigators release results from 
clinical trials, even when they are negative) or identifi ed a 
novel, tolerable drug that results in a robust increase in 
fetal haemoglobin concentration.

Transcriptional regulation: the basic theory of 
BCL11A
The identifi cation of transcription factors that are 
important for γ-globin silencing off ers promise for 
increased therapeutic specifi city. BCL11A is the most 
potent repressor of fetal haemoglobin production 
identifi ed to date. Findings from many experimental 
studies show that loss of BCL11A causes a large increase 
in fetal haemoglobin concentration with minimal eff ect 
on erythropoiesis.46–48,94 The major potential drawback to 
the targeting of BCL11A would appear to be its key 
functions in non-erythroid lineages. BCL11A has 
important roles in neuron development, B-cell lympho-
poiesis, and dendritic cell fate, perhaps also in 
haemopoietic stem cells and progenitor cells and 
pancreatic precursors.95–100 A striking feature of BCL11A’s 
repression of γ-globin is the exquisite dose-dependence 
of the eff ect. Mice carrying only one copy of Bcl11a show 
an intermediate eff ect in terms of γ-globin derepression 
compared with wild-type mice.48 SNPs associated with 
variations in fetal haemoglobin concentration result in a 
modest decrease in BCL11A gene expression, preserving 
about 65% of normal concentration, and are associated 
with a roughly three-times increase in fetal haemoglobin 
concentration in patients with sickle-cell disease.51 
Individuals who are haploinsuffi  cient for BCL11A show 
an increase in fetal haemoglobin concentration, which 
ranges from 4∙8% to 29∙7%, which is a remarkable 
increase in a non-haemoglobinopathy setting in which 
fetal haemoglobin concentration is typically less than 1% 
(fi gure 2).49,50 No immunodefi ciency or other 
haematological toxic eff ect has been recorded in patients 
with this haploinsuffi  ciency. A small-molecule approach 
targeting BCL11A might be a plausible way to reduce 
BCL11A activity below a threshold needed for fetal 
haemoglobin repression but spare extra-erythroid 
functions. Additionally, although the details of all its 
molecular interactions are incompletely understood, 
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BCL11A participates in multiprotein, co repressive 
complexes in erythroid cells. Unique aspects (eg, 
protein–protein interfaces) of the erythroid BCL11A-
containing complex could possibly be targeted to achieve 
small-molecule specifi city in erythroid precursors and 
avoid an eff ect on other cell types.

The basis of the specifi c benefi cial role of BCL11A SNPs 
in the regulation of fetal haemoglobin production and 
amelioration of sickle-cell disease seems to stem from the 
functional disruption of erythroid-specifi c regulatory 
sequences by these intronic variants.51 Indeed, these 
variants are found within an adult-stage-specifi c, 
erythroid-restricted enhancer element. The SNP that is 
most strongly associated with regulation of fetal 
haemoglobin concentration at the BCL11A locus disrupts 
a binding site of GATA1, an important transcription factor 
for gene expression in erythrocytes. Genome editing 
studies have clarifi ed important BCL11A intronic 

sequences that are necessary for fetal haemoglobin 
repression and could be targeted in novel therapeutic 
strategies. Deletion of the BCL11A erythroid enhancer by 
genome editing results in loss of BCL11A expression in 
erythroid precursors but not in other lineages that depend 
on BCL11A such as neurons or B lymphocytes.51,101 
CRISPR-Cas9-directed disruption of the entire enhancer 
by a tiling series of individual cleavages has revealed that 
small mutations restricted to important minimal 
functional sequences are suffi  cient to substantially reduce 
BCL11A expression and con comitantly increase fetal 
haemoglobin production.101 These results therefore 
suggest a novel genetic therapy for sickle-cell disease: 
isolation of haemopoietic stem cells from patients; 
delivery of genome editing technology, such as zinc-fi nger 
nucleases or CRISPR-Cas9, to disrupt the erythroid 
enhancer of BCL11A; and autologous reinfusion of 
modifi ed cells (fi gure 5). Notably, inactivation of tissue-
specifi c enhancers by genome editing might be an 
eff ective and widely applicable strategy to translate GWAS 
fi ndings into therapeutic interventions for several 
complex human diseases. Although correction of the βS 
mutation would be the defi nitive genome-editing 
approach to cure sickle-cell disease, this manoeuvre 
would require robust homology-directed repair in 
haematopoietic stem cells. Unfortunately, the molecular 
pathway for homology-directed repair is only active at 
exceedingly low levels in these quiescent cells.103–105 By 
contrast, the error-prone non-homologous end-joining 
pathway, which might result in robust gene disruption,106 
is the predominant repair pathway in haemopoietic stem 
cells. In view of technology at present, a strategy that 
relies on genetic disruption, such as a single enhancer 
cleavage, is probably more feasible than gene repair.101 
Careful assessment of any off -target genomic eff ects of 
nucleases would need to precede any clinical 
implementation. An alternative approach to fetal 
haemoglobin induction is knockdown of BCL11A 
expression by RNA interference.107 The development of 
novel vectors with the potential for erythroid-specifi c 
expression is a promising way to restrict the eff ects to the 
erythroid lineage.108 With contemporary technology, such 
novel, autologous, cell-based approaches would be limited 
to highly sophisticated research centres that are capable 
of monitoring gene therapies in the context of 
haemopoietic stem-cell transplantation.

Geneticists have identifi ed two additional transcription 
factors—MYB and KLF1—that play key parts in the 
regulation of fetal haemoglobin production in human 
beings and could serve as therapeutic targets. To target 
MYB, either by a small molecule or genetic approach, 
would be an alternative strategy for fetal haemoglobin 
reinduction. However, in view of the essential role MYB 
has in haemopoietic stem and progenitor cells, such an 
approach would need to be highly erythroid-specifi c to 
avoid toxic eff ects. KLF1 appears to regulate fetal 
haemoglobin in two diff erent ways: by directly activating 

Drug Phase Sample 
size

Results

Effi  cacy of vorinostat to induce fetal 
haemoglobin in sickle-cell disease 
(NCT01000155)

Vorinostat (HDAC 
inhibition)

1/2 5 Modest increase in HbF 
concentration91

Gum arabic as fetal haemoglobin 
agent in sickle-cell anaemia 
(NCT02467257)

Gum arabic (HDAC 
inhibition)

1/2 47 Completed in 2015, no 
results available

Study to determine the maximum 
tolerated dose, safety, and 
eff ectiveness of pomalidomide for 
patients with sickle-cell disease 
(NCT01522547)

Pomalidomide (anti-
angiogenic, 
immunomodulator)

1 12 Completed in 2013, no 
results available

Evaluation of hydroxyurea plus 
L-arginine or sildenafi l to treat sickle-
cell anaemia (NCT00056433)

Hydroxyurea, 
L-arginine, sildenafi l 
(nitric oxide 
production)

1 39 Sildenafi l modestly 
increases HbF 
concentration92

Eff ect of broccoli sprouts 
homogenate on SS RBC 
(NCT01715480)

Broccoli sprouts 
homogenate 
(induction of 
sulforaphane by 
NRF2)

1 21 Completed in 2015, no 
results available

A phase 1/2 trial of recombinant-
methionyl human stem cell factor 
(SCF) in adult patients with sickling 
disorders (NCT00005783)

Recombinant-
methionyl human 
stem-cell factor 
(haemopoietic 
progenitor cells 
stimulation)

1/2 50 Completed in 2000, no 
results available

Study of panobinostat in patients 
with sickle-cell disease 
(NCT01245179)

Panobinostat (HDAC 
inhibition)

1 27 Expected completion in 
December, 2018

Eff ects of HQK-1001 in patients with 
sickle-cell disease (NCT01601340)

Sodium 
2,2-dimethylbutyrate 
(HDAC inhibition)

2 77 No increase in HbF 
concentration93

Decitabine for high-risk sickle-cell 
disease (NCT01375608)

Decitabine 
(hypomethylating 
agent)

2 10 Completed in 2016, no 
results available 

Study of decitabine and 
tetrahydrouridine in patients with 
sickle-cell disease (NCT01685515)

Decitabine and 
tetrahydrouridine 
(deaminase inhibitor)

1 25 Actively recruiting 
patients

HbF=fetal haemoglobin. HDAC=histone deacetylase. 

 Table: Drugs that have been or are being tested as inducers of fetal haemoglobin in patients with 
sickle-cell disease (other than hydroxyurea)
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β-globin expression and by promoting the expression of 
BCL11A, which in turn represses γ-globin.60,109 To target 
KLF1 might be challenging because of the widespread 
eff ect of KLF1 on erythroid gene regulation and profound 
clinical phenotypes of individuals with biallelic KLF1 
mutations. Indeed, whereas some KLF1 variants are 
associated with mild phenotypes, such as increased fetal 
haemoglobin concentration, other mutations can lead to 
severe diseases such as congenital dyserythropoietic 
anaemia, transfusion-dependent haemolytic anaemia, 
and hydrops fetalis.110–112

The third of three loci identifi ed by GWAS as associated 
with the regulation of fetal haemoglobin concentration is 
the β-globin gene cluster itself. Thorough investigation is 
necessary to determine whether modifi cation or 
disruption of the β-globin gene cluster, either by 
mimicking naturally occurring, rare HPFH alleles or by 
producing novel changes associated with increased fetal 
haemoglobin concentration, could be a therapeutic 
option for patients with sickle-cell disease. The precise 
mechanism by which the common variants associated 
with increased fetal haemoglobin concentration achieve 
this eff ect remains incompletely understood. The 
potential for innovative therapeutics to reconfi gure the 
β-globin gene cluster and increase fetal haemoglobin 
concentration has been established through work with 
synthetic transcriptional modulators.113 Deng and 
colleagues114 showed that a hybrid DNA-binding protein 
engineered to occupy the γ-globin promoter and interact 
with the major enhancer of the β-globin gene cluster (the 
locus control region) could support a long-range physical 
interaction between the locus control region and γ-globin 
at the expense of β-globin.

Other transcription factors and microRNAs that probably 
contribute to appropriate globin gene expression during 
development include SOX6, TR2/TR4, lin-28/let-7, and 
miR-15a/16-1,39,85,115,116 but none have been validated or 
shown to have the necessary potency or specifi city to justify 
their use as therapeutic targets. Transcription factors have 
traditionally been considered undruggable targets.117 
However, the recent success of novel, small-molecule 
approaches to the targeting of transcription factors gives 
renewed optimism about the possibility that the function 
of these key proteins can be chemically interrupted. For 
example, a modular, chemical approach, in which a 
protein-binding ligand could be appended to a phthalimide 
moiety, was shown to result in selective target degradation.118 

A set of reports provide evidence that thalidomide 
derivatives, such as lenalidomide, act by targeting specifi c 
transcription factors for proteasomal degradation, 
depending on cellular context. For example, in multiple 
myeloma cells, these drugs result in specifi c destruction of 
the IKZF1 and IKZF3 transcription factors, whereas in 
myelodysplastic syndrome del(5q) cells, the same drugs 
achieve their biological effi  cacy through selective 
destruction of casein kinase 1α.119,120 Intriguingly, 
thalidomide derivatives have been reported to increase the 

concentration of fetal haemoglobin,121,122 suggesting the 
selective degradation of factors that have yet to be 
discovered.

Conclusions
Comprehension of the genetic, developmental, and 
molecular events that control fetal haemoglobin 
production in human beings has substantially improved 
in the past decade. Although the most cost-eff ective public 
health strategy for sickle-cell disease remains prevention 
by education and prenatal diagnosis, this success has 
raised hope that knowledge could be harnessed to fi ne-
tune the human genome and develop eff ective fetal 
haemoglobin-inducing therapies to treat sickle-cell 
disease. Although we embrace this progress, we also 
realise that delivery of these new treatments, even if 

A

B

Sickle-cell disease Therapeutic HbF induction

BCL11A BCL11A BCL11A BCL11A

BCL11A
mRNA

BCL11A
mRNA

+62 +58 +55

BCL11A

BCL11ABCL11A

+62 +58 +55

LCR

HbF HbS
ε Gγ Aγ δ βS

LCR

HbF HbS
ε Gγ Aγ δ βS

Figure 5: Therapeutic genome editing approach to induce fetal haemoglobin production in patients with 
sickle-cell disease
(A) Programmable, targeted nuclease cleavage followed by error-prone non-homologous end-joining repair could 
disrupt critical sequences within the BCL11A erythroid enhancer; as a result, expression of BCL11A would be impaired 
in erythroid precursor cells, whereas other cells dependent on BCL11A expression (dependent on diff erent enhancers) 
would be spared. The ultimate outcome would be reconfi guration of the β-globin gene cluster to favour high-level 
expression of γ-globin (and fetal haemoglobin [HbF]) at the expense of βS-globin (and sickle haemoglobin [HbS]). 
(B) Envisaged genetic therapy approach would include isolation of haemopoietic stem cells from patients with 
sickle-cell disease, ex-vivo delivery of genome editing with targeted nucleases at a clinical scale, validation of the 
intended genomic modifi cation by sequence analysis, preparative conditioning therapy, and autologous cellular 
reinfusion. Even in the setting of a mixed chimeric outcome (ie, the shared presence of modifi ed and unmodifi ed 
haemopoietic stem cells), the known survival advantage of HbF-expressing cells at the erythroblast and erythrocyte 
stages would favour clinical amelioration. LCR=locus control region. Adapted with permission from Bauer and Orkin. 102
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successful, would be very challenging to most patients 
worldwide. Small and aff ordable molecules that increase 
fetal haemoglobin production, such as hydroxyurea, are 
still the best short-term solution for most patients with 
sickle-cell disease in Africa and south Asia. In this respect, 
support is needed for clinical trials designed to show the 
safety and clinical effi  cacy of hydroxyurea in these 
countries.123 Additionally, renewed interest from funding 
agencies will be essential to coordinate high-quality and 
large-scale studies of the natural history of sickle-cell 
disease and the disease response to interventions in 
countries where the global burden predominates. Such 
studies would also provide an infrastructure to collect 
biospecimens, including DNA, to foster genetic research 
of sickle-cell disease and genomic medicine in 
underserved parts of the world. African populations are 
characterised by extensive and often private genetic 
variation. Until more population diversity is included in 
the genetic search for novel fetal haemoglobin regulators, 
attractive new targets will probably be missed or newly 
developed therapies will be suboptimum.

Prospects have never been brighter for the strategy of 
fetal haemoglobin reinduction in patients with sickle-cell 
disease. With the sustained focus of scientists, doctors, 
public health offi  cials, and philanthropists, we are 
optimistic that this excitement within the biomedical 
community could improve outcomes for patients around 
the world.
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