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The optimal method for considering different genetic models in association studies is not clear. We compared analytical
strategies that use different genetic models to analyze genotype–phenotype information from association studies of
quantitative traits in unrelated individuals. We created simulated datasets where the minor alleles are causal with an
additive, dominant, or recessive mode of inheritance over a range of allele frequencies. We then computed power to detect
these causal alleles using one or a combination of statistical models in a standard regression framework, including
corrections for the multiple testing incurred by analyzing multiple models. Our results show that, as expected, maximal
power is achieved when we test a single genetic model that matches the actual underlying mode of inheritance of the causal
allele. When the inheritance pattern of the causal allele is unknown, the co-dominant model, a single two degrees of
freedom test, has good overall performance in any of the three simple modes of inheritance simulated. Alternatively, it is
slightly more powerful to analyze all three genetic models together (additive, dominant, and recessive), but only if the
significance thresholds used to correct for analyzing multiple models are appropriately determined (such as by
permutation). Finally, a commonly employed approach, testing the additive model alone, performs poorly for recessive
causal alleles when the minor allele frequency is not close to 50%. Our observations were confirmed by analyzing an
existing genetic association dataset in which we detect the effect of a KCNJ11 variant on insulinogenic index in unrelated
non-diabetic individuals. Genet. Epidemiol. 31:358–362, 2007. r 2007 Wiley-Liss, Inc.
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INTRODUCTION

In genetic association studies, statistical power
to detect disease susceptibility loci (DSLs) de-
pends, among other factors, on the genetic models
tested in the analysis: maximum power is reached
when the ‘true’ mode of inheritance of the DSL
and the genetic model used in the analysis are
concordant. One apparent solution to this problem
is to test several genetic models, but this increases
the multiple testing burden, which may decrease,
rather than increase power, once appropriate
statistical thresholds are applied to take into
account the multiple hypothesis testing. It is
therefore of interest to determine which genetic
model, or combination of models, maximizes

power to detect DSLs in genetic association
studies. This question has been addressed pre-
viously for family-based association studies [Laird
and Lange, 2006; Lange et al., 2002; Lange and
Laird, 2002]. The issue of genetic model testing
has also been explored for dichotomous (case-
control design) and quantitative traits using
unrelated individuals, but in the setting of an
analytic approach (likelihood testing) that is more
complex than the analytic methods commonly
implemented in the association study literature
[Wang and Sheffield, 2005]. Here, we consider
population-based association studies of quantita-
tive traits, tested for association under a simple,
widely used and flexible framework (linear
regression). For this study design, we evaluate
how statistical power varies depending on the
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genetic model(s) tested, the mode of inheritance of
the DSL (additive, dominant, or recessive), and its
allele frequency, and draw conclusions regarding
optimal strategies for testing different genetic
models.

METHODS

Our simulations were performed using the
statistical package R 2.4.0, assuming a continuous
and normally distributed phenotype, a sample
size of 1,000 unrelated individuals, and varying
the minor allele frequency (MAF) of the bi-allelic
DSLs from 5 to 50%. Essentially identical conclu-
sions were drawn from simulations using a
sample size of 200 unrelated individuals, with an
expected slight increase in the effect of sampling
variation at low allele frequencies (data not
shown). Analysis of linear regression results with
the F-test was used to assess significance of
phenotype–genotype associations. Where we
tested more than one genetic model, the best F
statistic observed under any model (Fmax) was
used as an association test statistic.

Significance thresholds were determined em-
pirically. For each model or combination of
models, we generated an empirical distribution
of association test statistics by performing 100,000
simulations under the null hypothesis (H0: var-
iance explained by the causal allele 5 0%). Where
more than one model was used, we recorded the
distribution of Fmax for those models under the
null. To assess empirical significance of an
observed F or Fmax statistic, we compared the
observed statistic to the corresponding distribu-
tion of test statistics generated under the null.
Note that when single models are tested in large
samples, the significance thresholds derived by
simulations are essentially identical to the asymp-
totic values from the F-distribution. However, for
consistency across our simulations, we have used
simulation-based thresholds throughout this arti-
cle when testing single models as well as
combinations of models. This empirical approach
allows us to use a permutation-based approach to
maintain a constant type I error rate (a), regardless
of which or how many genetic models were
tested. We then computed power achieved by
each of several genetic models, or combinations of
models, for detecting DSLs under the alternative
hypothesis (H1: variance explained by the causal
allele 5 1%). Power for each analytic approach
was estimated by performing 10,000 simulations

under H1 for each of three underlying genetic
modes of inheritance and a range of minor allele
frequencies.

RESULTS AND DISCUSSION

We first considered statistical power obtained
by each of four individual statistical tests: addi-
tive, dominant, or recessive, each with one degree
of freedom, and co-dominant, with two degrees of
freedom. Although both the additive and domi-
nant statistical models — two often highly
correlated tests (see below and data not shown)
— perform well when the minor allele of the DSL
has an additive or dominant genetic effect
(Figs. 1A and 1B), these models do not have good
power to detect a recessive causal genetic locus,
especially at MAF o20% (Fig. 1C). Reciprocally,
the recessive statistical model performs poorly for
DSLs that act additively or dominantly (Fig. 1).
The co-dominant model, however, achieved rela-
tively good power to detect DSLs in any of the
simple genetic scenarios simulated here for MAF
Z5% (Fig. 1).

Secondly, we asked whether combining the
additive and/or dominant model(s) with the
recessive model, and using the best test statistic
from all tested models (in this case, an F statistic)
would be a more powerful analytical strategy than
simply testing the co-dominant model for associa-
tion studies of quantitative traits in unrelated
individuals. Importantly, we empirically deter-
mined significance thresholds by performing
simulations under a null model and recording
the best F statistics for the models used in the
analysis, as described above. In Fig. 2, we compare
the power achieved when testing the additive
or co-dominant model alone with the power
achieved when combining the additive and/or
dominant model(s) with the recessive model. In
our simulations, testing the three models was
slightly more powerful across the three possible
modes of inheritance (Fig. 2). For instance,
whereas the additive model alone gives more
power than a combination of the three models
to detect additive DSLs, or dominant DSLs with
MAF o25%, the combination of three tests is
overwhelmingly more powerful at detecting
recessive causal allele than the additive model
alone (Fig. 2). Intuitively, this means that the gain
in power when testing the additive, dominant,
and recessive statistical models together in our
study design is sufficient to counterbalance the
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Fig. 1. Statistical power to detect (A) additive, (B) dominant, or

(C) recessive disease susceptibility loci using four different

statistical models (one degree of freedom: additive, dominant,

recessive models; two degrees of freedom: co-dominant model)
in population-based association studies of quantitative traits.

Results shown were obtained using empirically determined

significance thresholds as described in the text (a5 0.05). For
these simple models, the empirical thresholds were essentially

identical to the asymptotic values from the appropriate

F-distribution with one or two degrees of freedom.
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Fig. 2. Combining genetic models increases statistical power to
detect (A) additive, (B) dominant, or (C) recessive disease

susceptibility loci (DSLs) in association studies of quantitative

traits in unrelated individuals. We compare the power achieved

by single tests (additive and co-dominant models) with the
power achieved when the additive and dominant models are

combined with the recessive model. Combinations of models

(‘‘Add1Rec’’, ‘‘Dom1Rec’’, ‘‘Add1Dom1Rec’’) provide more
power to detect recessive DSLs than the additive model alone.

Combining the three one degree of freedom tests (‘‘Add1Dom1

Rec’’) is also slightly more powerful than the co-dominant alone

to detect recessive DSLs. Results shown were obtained using
empirically determined significance thresholds to maintain a

type I error rate of 5%, as described in the text.
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loss of power caused by the multiple testing
problem, as long as appropriate thresholds of
significance are used. We also note that testing the
three models together provided slightly more
power than testing the two degrees of freedom
co-dominant model alone (compare ‘‘Add1Dom
1Rec’’ with ‘‘Co-dominant’’ in Fig. 2), but these
approaches were fairly similar.

Thirdly, we examined the impact of using
empirical statistical thresholds, as opposed to
simply performing a Bonferroni correction for
the multiple genetic models tested. We compared
the power observed when using Bonferroni-
corrected significance thresholds from the one
degree of freedom F-test statistics rather than the
empirical thresholds that were determined using
the permutation-based approach. We would
expect Bonferroni correction to be overly stringent
in this context, as none of the models tested are
completely independent from each other, and the
additive and dominant models are highly corre-
lated at low minor allele frequencies. For example,
the Spearman’s rank correlation coefficient be-
tween the additive and dominant model for an
additive DSL at MAF 10% is 0.82. Not surpris-
ingly, using the Bonferroni-corrected thresholds
led to a loss in power: in Fig. 3, all combinations
of tests that used empirical significance thresholds
achieved more power than the corresponding
power for simple Bonferroni-corrected thresholds
(compare the corresponding ‘‘Permutation’’ and
‘‘Bonferroni’’ results in Fig. 3). This difference in
power was especially true when the three statis-
tical models were tested, leading to a �5% loss in
power (compare ‘‘Add1Dom1Rec Bonferroni’’
and ‘‘Add1Dom1Rec Permutation’’ in Fig. 3).

Finally, we evaluated the effect of genetic model
testing on the significance level of a real genotype-
phenotype association. Florez et al. reported an
association between a variant in the gene KCNJ11
(E23K, rs5219) and a quantitative trait, insulino-
genic index, in unrelated non-diabetic Scandina-
vians (N 5 674); the authors obtained their most
significant result when modeling a recessive locus
[Florez et al., 2004]. Similarly, the recessive model
was the most significant single test in our analysis
(P 5 0.016, Table I), and the result was not
significant under an additive model (P 5 0.125,
Table I). We also assessed the significance level of
this association if several genetic models had been
tested, that is if we did not know the mode of
inheritance of KCNJ11 E23K, and we had to correct
for testing multiple genetic models. Empirical
P-values for this dataset, obtained by randomly
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Fig. 3. Using Bonferroni-corrected asymptotic values, as opposed

to empirically determined significance thresholds, reduces statis-

tical power in population-based association studies to detect (A)

additive, (B) dominant, or (C) recessive quantitative disease
susceptibility loci. Permutation-based significance thresholds were

obtained by generating null distributions of the best F statistics for

each simulation, and selecting values that allow a type I error rate
of 5%, as explained in the text. Bonferroni-corrected significance

thresholds were obtained by dividing the type I error rate allowed

(5%) by the number of models tested (by two for simulations with

‘‘Add1Rec’’ and ‘‘Dom1Rec’’, and by three for ‘‘Add1Dom1Rec’’)
and retrieving the corresponding asymptotic values from the F-

distribution. Bonferroni correction is too stringent and leads to a

loss in power in all combinations of models tested; this is

especially true when the additive, dominant, and recessive models
are tested together (‘‘Add1Dom1Rec Bonferroni’’ vs. ‘‘Add1Dom

1Rec Permutation’’). Please note the scale of the Y-axis.
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permuting the phenotype data, were all lower
than the Bonferroni-corrected P-values, indicating
again that Bonferroni is a too severe correction
because of the dependence of the models tested
(compare ‘‘Corrected’’ and ‘‘Empirical’’ P-values
in Table I). The co-dominant model did also
relatively well by itself, and would have captured
the association between KCNJ11 E23K and insulin
secretion at a significance level ao0.05 (Co-
dominant P 5 0.044, Table I). The co-dominant
model, however, did not perform as well in this
dataset as a combination of the three one degree of
freedom tests, as long as empirical significance
thresholds were used (P-values for the co-domi-
nant and ‘‘Add1Dom1Rec Empirical’’ strategies
are, respectively, 0.044 and 0.037, Table I). Similar
results were obtained when analyzing an associa-
tion between insulin secretion and a variant in the
gene TCF7L2 (data not shown) [Saxena et al.,
2006].

CONCLUSION

In conclusion, we have used simulations and
existing phenotype–genotype datasets to compare
strategies for using different genetic models to
analyze results from population-based association
studies of quantitative traits. Based on our results,
we recommend either testing the co-dominant
statistical model alone, or alternatively testing the
additive, dominant, and recessive models together
but using empirically determined significance
thresholds to correct for testing multiple corre-
lated genetic models. The additive model per-
forms well to detect additive or dominant DSLs,
but testing the additive model alone, a common
practice in association study genetics, does not
maximize power if recessive effects are important
contributors to the trait being studied.
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TABLE I. Genetic model testing and significance level
of KCNJ11 E23K (rs5219) on the insulinogenic index of
unrelated non-diabetic Scandinavians (N 5 674) [Florez
et al., 2004]

Model(s)
Asymptotic/

Corrected P-valuea Empirical P-valueb

Additive 0.125 n.a.
Dominant 0.905 n.a.
Recessive 0.016 n.a.
Co-dominant 0.044 n.a.
Add1Rec 0.032 0.028
Dom1Rec 0.032 0.030
Add1Dom1Rec 0.048 0.037

aFor the additive, dominant, recessive, or co-dominant model
alone, asymptotic P-values were calculated from the F-distribu-
tion. When several statistical models were tested, corrected
P-values were obtained by multiplying the lowest asymptotic
P-value from the F-tests by the number of models tested: for ‘‘Add
1Rec’’ and ‘‘Dom1Rec’’, the P-value for the recessive model (i.e.
the lowest P-value) was multiplied by two to give the corrected
P-value, and for ‘‘Add1Dom1Rec’’, it was multiplied by three.
bEmpirical P-values were obtained by permuting the phenotype
10,000 times, and counting the number of times P-values lower
than the lowest asymptotic P-value were obtained. n.a., not
applicable: empirical and asymptotic P-values for a single test are
identical because there is no correction needed.

362 Lettre et al.

Genet. Epidemiol. DOI 10.1002/gepi


