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Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci 
for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals 
with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci 
and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near 
GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of 
these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into 
human body weight regulation.

19 loci associated with BMI at P < 5 × 10−8 (Table 1, Fig. 1a and 
Supplementary Table 1). These 19 loci included all ten loci from 
previous GWAS of BMI6–10, two loci previously associated with body 
weight10 (at FAIM2 and SEC16B) and one locus previously associated 
with waist circumference14 (near TFAP2B). The remaining six loci, 
near GPRC5B, MAP2K5-LBXCOR1, TNNI3K, LRRN6C, FLJ35779-
HMGCR and PRKD1, have not previously been associated with BMI 
or other obesity-related traits.

Stage 2 follow up identifies additional new loci for BMI
To identify additional BMI-associated loci and to validate the loci 
that reached genome-wide significance in the stage 1 analyses, we 
examined SNPs representing 42 independent loci (including the 19 
genome-wide significant loci) having a stage 1 P < 5 × 10−6. Variants 
were considered to be independent if the pair-wise linkage disequi-
librium (LD, r2) was less than 0.1 and if they were separated by at 
least 1 Mb. In stage 2, we examined these 42 SNPs in up to 125,931 
additional individuals (79,561 newly genotyped individuals from 16 
different studies and 46,370 individuals from 18 additional studies 
for which genome-wide association data were available; Table 1, 
Supplementary Note and Online Methods). In a joint analysis of 
stage 1 and stage 2 results, 32 of the 42 SNPs reached P < 5 × 10−8 
(Table 1, Supplementary Table 1 and Supplementary Figs. 1 and 2).  
Even after excluding SNPs within the 32 confirmed BMI loci, we still 
observed an excess of small P values compared to the distribution 
expected under the null hypothesis (Fig. 1b and Supplementary 
Fig. 3), suggesting that more BMI loci remain to be uncovered.

The 32 confirmed associations included all 19 loci with P < 5 × 10−8 
at stage 1, 12 additional new loci near RBJ-ADCY3-POMC, QPCTL-
GIPR, SLC39A8, TMEM160, FANCL, CADM2, LRP1B, PTBP2, MTIF3-
GTF3A, ZNF608, RPL27A-TUB and NUDT3-HMGA1 and one locus 
(in NRXN3) previously associated with waist circumference15 (Table 1,  
Supplementary Table 1 and Supplementary Figs. 1 and 2). In all, 
our study increased the number of loci robustly associated with BMI 
from 10 to 32. Four of the 22 new loci were previously associated  

Association analyses of 249,796 individuals reveal  
18 new loci associated with body mass index

Obesity is a major and increasingly prevalent risk factor for multiple 
disorders, including type 2 diabetes and cardiovascular disease1,2. 
Although lifestyle changes have driven its prevalence to epidemic 
proportions, heritability studies provide evidence for a substantial 
genetic contribution (with heritability estimates (h2) of ~40%–70%) 
to obesity risk3,4. BMI is an inexpensive, non-invasive measure of 
obesity that predicts the risk of related complications5. Identifying 
genetic determinants of BMI could lead to a better understanding of 
the biological basis of obesity.

Genome-wide association studies (GWAS) of BMI have previously 
identified ten loci with genome-wide significant (P < 5 × 10−8) asso-
ciations6–10 in or near FTO, MC4R, TMEM18, GNPDA2, BDNF, 
NEGR1, SH2B1, ETV5, MTCH2 and KCTD15. Many of these genes 
are expressed or known to act in the central nervous system, high-
lighting a likely neuronal component in the predisposition to obesity9. 
This pattern is consistent with results in animal models and studies 
of monogenic human obesity in which neuronal genes, particularly 
those expressed in the hypothalamus and involved in regulation of 
appetite or energy balance, are known to play a major role in suscep-
tibility to obesity11–13.

The ten previously identified loci account for only a small fraction 
of the variation in BMI. Furthermore, power calculations based on the 
effect sizes of established variants have suggested that increasing the 
sample size would likely lead to the discovery of additional variants9. 
To identify additional loci associated with BMI, we expanded the 
Genetic Investigation of Anthropometric Traits (GIANT) Consortium 
genome-wide association meta-analysis to include a total of 249,796 
individuals of European ancestry.

RESULTS
Stage 1 GWAS identifies new loci associated with BMI
We first conducted a meta-analysis of GWAS of BMI and ~2.8 million 
imputed or genotyped SNPs using data from 46 studies including 
up to 123,865 individuals (Online Methods, Supplementary 
Fig. 1 and Supplementary Note). This stage 1 analysis revealed 
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with body weight10 or waist circumference14,15, whereas 18 new loci 
had not previously associated with any obesity-related trait in the gen-
eral population. Although we confirmed all loci previously established 
by large-scale GWAS for BMI6–10 and waist circumference14,15, four 

loci previously identified in GWAS for early-onset or adult morbid 
 obesity16,17 (at NPC1, rs1805081, P = 0.0025; MAF, rs1424233, P = 0.25; 
PTER, rs10508503, P = 0.64; and TNKS-MSRA, rs473034, P = 0.23) 
showed limited or no evidence of association with BMI in our study.

Table 1 Stage 1 and stage 2 results of the 32 SNPs that were associated with BMI at genome-wide significant (P < 5 × 10−8) levels

SNP
Nearest  

gene

Other  
nearby  
genesa Chr.

Positionb  
(bp)

Allelesb
Frequency  

effect  
allele

Per allele  
change  
in BMI

Explained  
variance  

(%) Stage 1 P Stage 2 P
Stage 1 + 2

Effect Other  (s.e.m.)c n P

Previously identified BMI loci

rs1558902 FTO 16 52,361,075 A T 0.42 0.39 (0.02) 0.34% 2.05 × 10−62 1.01 × 10−60 192,344 4.8 × 10−120

rs2867125 TMEM18 2 612,827 C T 0.83 0.31 (0.03) 0.15% 2.42 × 10−22 4.42 × 10−30 197,806 2.77 × 10−49

rs571312 MC4R (B) 18 55,990,749 A C 0.24 0.23 (0.03) 0.10% 1.82 × 10−22 3.19 × 10−21 203,600 6.43 × 10−42

rs10938397 GNPDA2 4 44,877,284 G A 0.43 0.18 (0.02) 0.08% 4.35 × 10−17 1.45 × 10−15 197,008 3.78 × 10−31

rs10767664 BDNF (B,M) 11 27,682,562 A T 0.78 0.19 (0.03) 0.07% 5.53 × 10−13 1.17 × 10−14 204,158 4.69 × 10−26

rs2815752 NEGR1 
(C,Q)

1 72,585,028 A G 0.61 0.13 (0.02) 0.04% 1.17 × 10−14 2.29 × 10−9 198,380 1.61 × 10−22

rs7359397 SH2B1 
(Q,B,M)

APOB48R 
(Q,M),  
SULT1A2 
(Q,M), 
AC138894.2 
(M), ATXN2L 
(M), TUFM (Q)

16 28,793,160 T C 0.40 0.15 (0.02) 0.05% 1.75 × 10−10 7.89 × 10−12 204,309 1.88 × 10−20

rs9816226 ETV5 3 187,317,193 T A 0.82 0.14 (0.03) 0.03% 7.61 × 10−14 1.15 × 10−6 196,221 1.69 × 10−18

rs3817334 MTCH2 
(Q,M)

NDUFS3 (Q), 
CUGBP1 (Q)

11 47,607,569 T C 0.41 0.06 (0.02) 0.01% 4.79 × 10−11 1.10 × 10−3 191,943 1.59 × 10−12

rs29941 KCTD15 19 39,001,372 G A 0.67 0.06 (0.02) 0.00% 1.31 × 10−9 2.40 × 10−2 192,872 3.01 × 10−9

Previously identified waist and weight loci

rs543874 SEC16B 1 176,156,103 G A 0.19 0.22 (0.03) 0.07% 1.66 × 10−13 2.41 × 10−11 179,414 3.56 × 10−23

rs987237 TFAP2B 6 50,911,009 G A 0.18 0.13 (0.03) 0.03% 5.97 × 10−16 2.40 × 10−6 195,776 2.90 × 10−20

rs7138803 FAIM2 12 48,533,735 A G 0.38 0.12 (0.02) 0.04% 3.96 × 10−11 7.82 × 10−8 200,064 1.82 × 10−17

rs10150332 NRXN3 14 79,006,717 C T 0.21 0.13 (0.03) 0.02% 2.03 × 10−7 2.86 × 10−5 183,022 2.75 × 10−11

Newly identified BMI loci

rs713586 RBJ ADCY3 (Q, M),  
POMC (Q,B)

2 25,011,512 C T 0.47 0.14 (0.02) 0.06% 1.80 × 10−7 1.44 × 10−16 230,748 6.17 × 10−22

rs12444979 GPRC5B 
(C,Q)

IQCK (Q) 16 19,841,101 C T 0.87 0.17 (0.03) 0.04% 4.20 × 10−11 8.13 × 10−12 239,715 2.91 × 10−21

rs2241423 MAP2K5 LBXCOR1 (M) 15 65,873,892 G A 0.78 0.13 (0.02) 0.03% 1.15 × 10−10 1.59 × 10−9 227,950 1.19 × 10−18

rs2287019 QPCTL GIPR (B,M) 19 50,894,012 C T 0.80 0.15 (0.03) 0.04% 3.18 × 10−7 1.40 × 10−10 194,564 1.88 × 10−16

rs1514175 TNNI3K 1 74,764,232 A G 0.43 0.07 (0.02) 0.02% 1.36 × 10–9 7.04 × 10−6 227,900 8.16 × 10−14

rs13107325 SLC39A8 
(Q,M)

4 103,407,732 T C 0.07 0.19 (0.04) 0.03% 1.37 × 10−7 1.93 × 10−7 245,378 1.50 × 10−13

rs2112347 FLJ35779 
(M)

HMGCR (B) 5 75,050,998 T G 0.63 0.10 (0.02) 0.02% 4.76 × 10−8 8.29 × 10−7 231,729 2.17 × 10−13

rs10968576 LRRN6C 9 28,404,339 G A 0.31 0.11 (0.02) 0.02% 1.88 × 10−8 3.19 × 10−6 216,916 2.65 × 10−13

rs3810291 TMEM160 
(Q)

ZC3H4 (Q) 19 52,260,843 A G 0.67 0.09 (0.02) 0.02% 1.04 × 10−7 1.59 × 10−6 233,512 1.64 × 10−12

rs887912 FANCL 2 59,156,381 T C 0.29 0.10 (0.02) 0.03% 2.69 × 10−6 1.72 × 10−7 242,807 1.79 × 10−12

rs13078807 CADM2 3 85,966,840 G A 0.20 0.10 (0.02) 0.02% 9.81 × 10−8 5.32 × 10−5 237,404 3.94 × 10−11

rs11847697 PRKD1 14 29,584,863 T C 0.04 0.17 (0.05) 0.01% 1.11 × 10−8 2.25 × 10−4 241,667 5.76 × 10−11

rs2890652 LRP1B 2 142,676,401 C T 0.18 0.09 (0.03) 0.02% 2.38 × 10−7 9.47 × 10−5 209,068 1.35 × 10−10

rs1555543 PTBP2 1 96,717,385 C A 0.59 0.06 (0.02) 0.01% 7.65 × 10−7 4.48 × 10−5 243,013 3.68 × 10−10

rs4771122 MTIF3 GTF3A (Q) 13 26,918,180 G A 0.24 0.09 (0.03) 0.02% 1.20 × 10−7 8.24 × 10−4 198,577 9.48 × 10−10

rs4836133 ZNF608 5 124,360,002 A C 0.48 0.07 (0.02) 0.01% 7.04 × 10−7 1.88 × 10−4 241,999 1.97 × 10−9

rs4929949 RPL27A TUB (B) 11 8,561,169 C T 0.52 0.06 (0.02) 0.01% 7.57 × 10−8 1.00 × 10−3 249,791 2.80 × 10−9

rs206936 NUDT3 HMGA1 (B) 6 34,410,847 G A 0.21 0.06 (0.02) 0.01% 2.81 × 10−6 7.39 × 10−4 249,777 3.02 × 10−8

Chr., chromosome; Q, association and eQTL data converge to affect gene expression; B, biological candidate; M, BMI-associated variant is in strong LD (r2  0.75) with a missense 
variant in the indicated gene; C, CNV.
aGenes within  500 kb of the lead SNP. bPositions according to Build 36 and allele coding based on the positive strand. cEffect sizes in kg/m2 obtained from stage 2 cohorts only. 
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As could be expected, the effect sizes of the 18 newly discovered loci 
are slightly smaller, for a given minor allele frequency, than those of 
the previously identified variants (Table 1 and Fig. 1c). The increased 
sample size used here also brought out more signals with low minor 
allele frequency. The BMI-increasing allele frequencies for the 18 
newly identified variants ranged from 4% to 87%, covering more of 
the allele frequency spectrum than previous, smaller GWAS of BMI 
(24%–83%)9,10 (Table 1 and Fig. 1c).

We tested for evidence of non-additive (dominant or recessive) 
effects, SNP × SNP interaction effects and heterogeneity by sex or 
study among the 32 BMI-associated SNPs (Online Methods). We 
found no evidence for any such effects (all P > 0.001 and no significant 
results were seen after correcting for multiple testing) (Supplementary 
Table 1 and Supplementary Note).

Impact of the 32 confirmed loci on BMI, obesity, body size 
and other metabolic traits
Together, the 32 confirmed BMI loci explained 1.45% of the inter-
individual variation in BMI in the stage 2 samples, with the FTO 
SNP accounting for the largest proportion of the variance (0.34%) 
(Table 1). To estimate the cumulative effect of the 32 variants on BMI, 
we constructed a genetic susceptibility score that summed the number 
of BMI-increasing alleles weighted by the overall stage 2 effect sizes in 
the Atherosclerosis Risk in Communities (ARIC) study (n = 8,120), 
one of our largest population-based studies (Online Methods). For 
each unit increase in the genetic-susceptibility score, which is approxi-
mately equivalent to having one additional risk allele, BMI increased 
by 0.17 kg/m2, the equivalent of a 435–551 g gain in body weight in 
adults of 160–180 cm in height. The difference in average BMI between 
individuals with a high genetic-susceptibility score (defined as having 

38 BMI-increasing alleles, comprising 1.5% (n = 124) of the ARIC 
sample) and those with a low genetic-susceptibility score (defined 
as having 21 BMI-increasing alleles, comprising 2.2% (n = 175) of 

the ARIC sample) was 2.73 kg/m2, equivalent to a 6.99–8.85 kg body 
weight difference in adults of 160–180 cm in height (Fig. 2a). Still, 
we note that the predictive value for obesity risk and BMI of the 32 
variants combined was modest, although it was statistically significant 
(Fig. 2b and Supplementary Fig. 4). The area under the receiver-
operating characteristic (ROC) curve for prediction of risk of obesity 
(BMI  30 kg/m2) using a model including age, age2 and sex only was 
0.515 (P = 0.023 compared to the area under the curve (AUC) of 0.50), 
which increased to 0.575 (P < 10−5) when the 32 confirmed SNPs were 
also included in the model (Fig. 2b). The area under the ROC curve 
for the model including the 32 SNPs only was 0.574 (P < 10−5).

All 32 confirmed BMI-increasing alleles showed directionally 
consistent effects on the risk of being overweight (BMI  25 kg/m2) 
or obese (BMI  30 kg/m2) in the stage 2 samples, with 30 of 32 
variants achieving at least nominally significant associations. The 
BMI-increasing alleles increased the odds of being overweight by 
1.013- to 1.138-fold and the odds of being obese by 1.016- to 1.203-
fold (Supplementary Table 2). In addition, 30 of the 32 loci also 
showed directionally consistent effects on the risk of extreme and 
early-onset obesity in a meta-analysis of seven case-control studies of 
adults and children (binomial sign test P = 1.3 × 10−7) (Supplementary 
Table 3). The BMI-increasing allele observed in adults also increased 
the BMI in children and adolescents with directionally consistent 
effects observed for 23 of the 32 SNPs (binomial sign test P = 0.01). 
Furthermore, in family-based studies, the BMI-increasing allele was 
over-transmitted to the obese offspring for 24 of the 32 SNPs (bino-
mial sign test P = 0.004) (Supplementary Table 3). As these studies 
in extreme obesity cases, children and families were relatively small 
(with n ranging from 354 to 15,251 individuals) compared to the 
overall meta-analyses, their power was likely insufficient to confirm 
association for all 32 loci. Nevertheless, these results show that the 
effects are unlikely to reflect population stratification and that they 
extend to BMI differences throughout the life course.

Figure 1 Genome-wide association results for 
the BMI meta-analysis. (a) Manhattan plot 
showing the significance of association between 
all SNPs and BMI in the stage 1 meta-analysis, 
highlighting SNPs previously reported to show 
genome-wide significant association with BMI 
(blue), weight or waist circumference (green) 
and the 18 new regions described here (red). 
The 19 SNPs that reached genome-wide 
significance in stage 1 (13 previously reported 
and 6 new SNPs) are listed in Table 1.  
(b) Quantile-quantile plot of SNPs in the stage 1  
meta-analysis (black) and after removing any 
SNPs within 1 Mb of the ten previously reported 
genome-wide significant hits for BMI (blue), 
after additionally excluding SNPs from the 
four loci for waist or weight (green), and after 
excluding SNPs from all 32 confirmed  
loci (red). The plot is abridged at the y axis 
(at P < 10−20) to better visualize the excess of 
small P values after excluding the 32 confirmed 
loci (Supplementary Fig. 3 shows the full-scale 
quantile-quantile plot). The shaded region is the 
95% concentration band. (c) Plot of effect size 
(in inverse-normally transformed units (invBMI)) 
versus effect-allele frequency of newly identified 
and previously identified BMI variants after 
stage 1 and stage 2 meta-analysis, including the 
10 previously identified BMI loci (blue), the 4 previously identified waist and weight loci (green) and the 18 newly identified BMI loci (blue). The dotted 
lines represent the minimum effect sizes that could be identified for a given effect-allele frequency with 80% (upper line), 50% (middle line) and 10% 
(lower line) power, assuming a sample size of 123,000 individuals and an  level of 5 × 10−8.
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All BMI-increasing alleles were associated with increased body 
weight, as could be expected from the correlation between BMI and 
body weight (Supplementary Table 2). To confirm an effect of the loci 
on adiposity rather than general body size, we tested for association 
with body fat percentage, for which data was available in a subset of the 
stage 2 replication samples (n = 5,359 to n = 28,425) (Supplementary 
Table 2). The BMI-increasing allele showed directionally consistent 
effects on body fat percentage at 31 of the 32 confirmed loci (binomial 
sign test P = 1.54 × 10−8) (Supplementary Table 2).

We also examined the association of the BMI loci with metabolic 
traits (type 2 diabetes18, fasting glucose, fasting insulin, indices of  

-cell function (HOMA-B) and insulin resistance (HOMA-IR)19, and 
blood lipid levels20) and with height (Supplementary Tables 2 and 4).  
Although many nominal associations were expected because of known 
correlations between BMI and most of these traits, and because of 
overlap in samples, several associations stood out as possible examples 
of pleiotropic effects of the BMI-associated variants. Particularly 
interesting is the variant in the GIPR locus, where the BMI-increasing 
allele is also associated with increased fasting glucose levels and lower 
2-h glucose levels (Supplementary Table 4)19,21. The direction of 
the effect is opposite to what would be expected due to the correla-
tion between obesity and glucose intolerance but is consistent with 
the suggested roles of GIPR in glucose and energy metabolism (see 
below)22. Three loci showed strong associations (P < 10−4) with height 
(at MC4R, RBJ-ADCY3-POMC and MTCH2-NDUFS3). Because BMI 
is weakly correlated with height (and indeed, the BMI-associated vari-
ants as a group show no consistent effect on height), these associations 
are also suggestive of pleiotropy. Notably, analogous to the effects of 
severe mutations in POMC and MC4R on height and weight23,24, the 
BMI-increasing alleles of the variants near these genes were associated 
with decreased (POMC) and increased (MC4R) height, respectively 
(Supplementary Table 2).

Potential functional roles and pathway analyses
Although associated variants typically implicate genomic regions 
rather than individual genes, we note that some of the 32 loci include 
candidate genes with established connections to obesity. Several of 
the ten previously identified loci are located in or near genes that 
encode neuronal regulators of appetite or energy balance, includ-
ing MC4R12,25, BDNF26 and SH2B111,27. Each of these genes has 
been tied to obesity, not only in animal models, but also by rare 

human variants that disrupt each of these genes and lead to severe 
 obesity24,28,29. Using the automated literature search program Snipper 
(Online Methods), we identified various genes within the newly dis-
covered loci with potential biological links to obesity susceptibility 
(Supplementary Note). Among the new loci, the location of rs713586 
near POMC provides further support for a role of neuroendocrine 
circuits that regulate energy balance in susceptibility to obesity. 
POMC encodes several polypeptides, including -MSH, a ligand of 
the MC4R gene product30, and rare mutations in POMC also cause 
obesity in humans23,29,31.

In contrast, the locus near GIPR, which encodes a receptor of gastric 
inhibitory polypeptide (GIP), suggests a role for peripheral biology 
in obesity. GIP, which is expressed in the K cell of the duodenum and 
intestine, is an incretin hormone that mediates incremental insulin 
secretion in response to oral intake of glucose. The variant associated 
with BMI is in strong LD (r2 = 0.83) with a missense SNP in GIPR 
(rs1800437, p.Glu354Gln) that has recently been shown to influence 
glucose and insulin response to an oral glucose challenge21. Although 
no human phenotype is known to be caused by mutations in GIPR, 
mice with disruption of Gipr are resistant to diet-induced obesity32. 
The association of a variant in GIPR with BMI suggests that there 
may be a link between incretins, insulin secretion and body weight 
regulation in humans as well.

To systematically identify biological connections among the genes 
located near the 32 confirmed SNPs and to potentially identify new 
pathways associated with BMI, we performed pathway-based ana-
lyses using MAGENTA33. Specifically, we tested for enrichment of 
genetic associations to BMI in biological processes or molecular func-
tions that contain at least one gene from the 32 confirmed BMI loci 
(Online Methods). Using annotations from the Kyoto Encyclopedia 
of Genes and Genomes (KEGG), Ingenuity, Protein Analysis Through 
Evolutionary Relationships (PANTHER) and Gene Ontology data-
bases, we found evidence of enrichment for pathways involved in 
platelet-derived growth factor (PDGF) signaling (PANTHER,  
P = 0.0008, false discovery rate (FDR) = 0.0061), translation elongation  
(PANTHER, P = 0.0008, FDR = 0.0066), hormone or nuclear-hormone 
receptor binding (Gene Ontology, P < 0.0005, FDR < 0.0085), homeo-
box transcription (PANTHER, P = 0.0001, FDR = 0.011), regulation of 
cellular metabolism (Gene Ontology, P = 0.0002, FDR = 0.031), neuro-
genesis and neuron differentiation (Gene Ontology, P < 0.0002, FDR < 
0.034), protein phosphorylation (PANTHER, P = 0.0001, FDR = 0.045)  

Figure 2 Combined impact of risk alleles on 
BMI and obesity. (a) Combined effect of risk 
alleles on average BMI in the population-
based ARIC study (n = 8,120 individuals of 
European descent). For each individual, the 
number of ‘best guess’ replicated (n = 32) 
risk alleles from imputed data (0, 1 or 2) per 
SNP was weighted for its relative effect size 
estimated from the stage 2 data. Weighted risk 
alleles were summed for each individual, and 
the overall individual sum was rounded to the 
nearest integer to represent the individual’s risk 
allele score (ranging from 16 to 44). Along the 
x axis, individuals in each risk allele category 
are shown (grouped as having 21 risk alleles 
and 38 risk alleles at the extremes), and the mean BMI (  s.e.m.) is plotted (y axis on right), with the line representing the regression of the mean BMI 
values across the risk-allele scores. The histogram (y axis on left) represents the number of individuals in each risk-score category. (b) The area under 
the ROC curve (AUC) of two different models predicting the risk of obesity (BMI  30 kg/m2) in the 8,120 genotyped individuals of European descent in 
the ARIC study. Model 1, represented by the solid line, includes age, age2 and sex (AUC = 0.515, P = 0.023 for difference from the null AUC = 0.50). 
Model 2, represented by the dashed line, includes age, age2, sex and the 32 confirmed BMI SNPs (AUC = 0.575, P < 10−5 for difference from the null 
AUC = 0.50). The difference between both AUCs is significant (P < 10−4).

a b
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and numerous other pathways related to 
growth, metabolism, immune and neuronal 
processes (Gene Ontology, P < 0.002, FDR < 
0.046) (Supplementary Table 5).

Identifying possible functional variants
We used data from the 1000 Genomes Project 
and the HapMap Consortium to explore 
whether the 32 confirmed BMI SNPs were in 
LD (r2  0.75) with common missense SNPs or copy number variants 
(CNVs) (Online Methods). Non-synonymous variants in LD with 
our signals were present in BDNF, SLC39A8, FLJ35779-HMGCR, 
QPCTL-GIPR, MTCH2, ADCY3 and LBXCOR1. In addition, the 
rs7359397 signal was in LD with coding variants in several genes 
including SH2B1, ATNX2L, APOB48R, SULT1A2 and AC138894.2 
(Table 1, Fig. 3, Supplementary Table 6 and Supplementary Fig. 2).  
Furthermore, two SNPs tagged common CNVs. The first CNV has 
been previously identified9 and is a 45-kb deletion near NEGR1. The 
second CNV is a 21-kb deletion that lies 50 kb upstream of GPRC5B; 
the deletion allele is tagged by the T allele of rs12444979 (r2 = 1) 
(Fig. 3). Although the correlations with potentially functional vari-
ants do not prove that these variants are indeed causal, they pro-
vide first clues as to which genes and variants at these loci might be 
 prioritized for fine mapping and functional follow up.

Because many of the 32 BMI loci harbor multiple genes, we exam-
ined whether gene expression quantitative trait loci (eQTL) analyses 
could also direct us to positional candidates. Gene expression data 
were available for human brain, lymphocyte, blood, subcutaneous 
and visceral adipose tissue, and liver34–36 (Online Methods, Table 1 
and Supplementary Table 7). Significant cis associations, defined at 
the tissue-specific level, were observed between 14 BMI-associated 
alleles and expression levels (Table 1 and Supplementary Table 7). 
In several instances, the BMI-associated SNP was the most significant 
SNP or explained a substantial proportion of the association with the 
most significant SNP for the gene transcript in conditional analyses 
(adjusted P > 0.05). These significant associations included NEGR1, 
ZC3H4, TMEM160, MTCH2, NDUFS3, GTF3A, ADCY3, APOB48R, 
SH2B1, TUFM, GPRC5B, IQCK, SLC39A8, SULT1A1 and SULT1A2 
(Table 1 and Supplementary Table 7), making these genes higher 

priority candidates within the associated loci. However, we note that 
some BMI-associated variants were correlated with the expression 
of multiple nearby genes, making it difficult to determine the most 
relevant gene.

Evidence for the existence of additional associated variants
Because the variants identified by this large study explain only 1.45% 
of the variance in BMI (2%–4% of genetic variance based on an 
estimated heritability of 40%–70%), we considered how much the 
explained phenotypic variance could be increased by including more 
SNPs at various degrees of significance in a polygene model using 
an independent validation set (Online Methods)37. We found that 
including SNPs associated with BMI at lower significance levels (up 
to P > 0.05) increased the explained phenotypic variance in BMI to 
2.5%, or 4%–6% of the genetic variance (Fig. 4a). In a separate ana-
lysis, we estimated the total number of independent BMI-associated 
variants that are likely to exist with similar effect sizes as the 32 con-
firmed here (Online Methods)38. Based on the effect size and allele 
frequencies of the 32 replicated loci observed in stage 2 and the power 
to detect association in stage 1 and stage 2 combined, we estimated 
that there are 284 (95% CI 132–510) loci with similar effect sizes as 
those currently observed, which together would account for 4.5% 
(95% CI 3.1%–6.8%) of the phenotypic variation or 6%–11% of the 
genetic variation in BMI (based on an estimated heritability of 40%–
70%) (Supplementary Table 8). In order to detect 95% of these loci, 
a sample size of approximately 730,000 subjects would be needed 
(Fig. 4b). This method does not account for the potential of loci of 
smaller effect than those identified here to explain even more of the 
variance and thus provides an estimated lower bound of explained 
variance. These two analyses strongly suggest that larger GWAS will 
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Figure 3 Regional plots of selected replicating 
BMI loci with missense and CNV variants. SNPs 
are plotted by position on the chromosome 
against association with BMI (–log10 P). The 
SNP name shown on the plot was the most 
significant SNP after the stage 1 meta-analysis. 
Estimated recombination rates (from HapMap) 
are plotted in cyan to reflect the local LD 
structure. The SNPs surrounding the most 
significant SNP are color coded to reflect 
their LD with this SNP (taken from pairwise r2 
values from the HapMap CEU data). Genes, 
the position of exons and the direction of 
transcription from the UCSC genome browser 
are noted. Hashmarks represent SNP positions 
available in the meta-analysis. (a–c) Missense 
variants noted with their amino acid change for 
the gene listed above the plot. (d) Structural 
haplotypes and the BMI association signal in the 
GPRC5B region. A 21-kb deletion polymorphism 
was associated with four SNPs (r2 = 1.0) that 
comprise the best haplogroup associating with 
BMI. Plots were generated using LocusZoom 
(see URLs).
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continue to identify additional new associated loci but also indicate 
that even extremely large studies focusing on variants with allele fre-
quencies above 5% will not account for a large fraction of the genetic 
contribution to BMI.

We examined whether selecting only a single variant from each 
locus for follow up led us to underestimate the fraction of phenotypic 
variation explained by the associated loci. To search for additional 
independent loci at each of the 32 associated BMI loci, we repeated 
our genome-wide association meta-analysis conditioning on the 32 
confirmed SNPs. Using a significance threshold of P = 5 × 10−6 for 
SNPs at known loci, we identified one apparently independent signal 
at the MC4R locus; rs7227255 was associated with BMI (P = 6.56 × 
10−7) even after conditioning for the most strongly associated variant 
near MC4R (rs571312) (Fig. 5). Notably, rs7227255 is in perfect LD 
(r2 = 1) with a relatively rare MC4R missense variant (rs2229616, 
p.Val103Ile, minor allele frequency = 1.7%) that has been associ-
ated with BMI in two independent meta-analyses39,40. Furthermore, 

 mutations at the MC4R locus are known to influence early-onset 
obesity24,41, supporting the notion that allelic heterogeneity may be 
a frequent phenomenon in the genetic architecture of obesity.

DISCUSSION
Using a two-stage genome-wide association meta-analysis of up 
to 249,796 individuals of European descent, we identified 18 addi-
tional loci that are associated with BMI at genome-wide significance, 
bringing the total number of such loci to 32. We estimate that more 
than 250 common variant loci (that is, 284 predicted loci minus 32 
confirmed loci) with effects on BMI similar to those described here 
remain to be discovered and that even larger numbers of loci with 
smaller effects remain to be identified. A substantial proportion of 
these loci should be identifiable through larger GWAS and/or by 
 targeted follow up of the top signals selected from our stage 1 analysis. 
The latter approach is already being implemented through large-scale 
genotyping of samples informative for BMI using a custom array (the 

Metabochip) designed to support follow up of 
thousands of promising variants in hundreds 
of thousands of individuals.

The combined effect on BMI of the associ-
ated variants at the 32 loci is modest, and even 
when we try to account for as yet undiscovered 
variants with similar properties, we estimate 
that these common variant signals account 
for only 6%–11% of the genetic variation in 
BMI. There is a strong expectation that addi-
tional variance and biology will be explained 
using complementary approaches that capture 
variants not examined in the current study, 
such as lower frequency variants and short 
insertion-deletion polymorphisms. There is 
good reason to believe (based on our find-
ings at MC4R and other loci, such as those at 
POMC, BDNF and SH2B1, which feature both 
common and rare variant associations) that 
a proportion of such low-frequency and rare 
causal variation will map to the loci already 
identified by GWAS.

A primary goal of human genetic discovery 
is to improve understanding of the biology 

Figure 4 Phenotypic variance explained by 
common variants. (a) The variance explained is 
higher when SNPs not reaching genome-wide 
significance are included in the prediction 
model. The y axis represents the proportion 
of variance explained at different P value 
thresholds from the stage 1 meta-analysis. 
Results are given for three studies (Rotterdam 
Study II (RSII), Rotterdam Study III (RSIII), 
Queens Institute of Medical Research (QIMR)) 
which were not included in the meta-analysis, 
after exclusion of all samples from The 
Netherlands (for RSII and RSIII) and the United 
Kingdom (for QIMR) from the discovery analysis 
for this sub-analysis. The dotted line represents 
the weighted average of the explained variance 
of three validation sets. (b) Cumulative number of susceptibility loci expected to be discovered, including those we have already identified and others 
that have yet to be detected, by the expected percentage of phenotypic variation explained and the sample size required for a one-stage GWAS assuming 
a genomic control correction is used. The projections are based on loci that achieved a significance level of P < 5 × 10−8 in the joint analysis of stage 1  
and stage 2 and the distribution of their effect sizes in stage 2. The dotted red line corresponds to the expected phenotypic variance explained by the 
22 loci that are expected to be discovered in a one-stage GWAS using the sample size of stage 1 of this study.
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Figure 5 A second signal at the MC4R locus contributing to BMI. SNPs are plotted by position in 
a 1-Mb window of chromosome 18 against association with BMI (–log10 P). (a) Plot highlighting 
the most significant SNP in the stage 1 meta-analysis. (b) Plot highlighting the most significant 
SNP after conditional analysis, where the model included the most strongly associated SNP as a 
covariate. Estimated recombination rates (from HapMap) are plotted in cyan to reflect the local LD 
structure. The SNPs surrounding the most significant SNP are color coded to reflect their LD with 
this SNP (taken from pairwise r2 values from the HapMap CEU database). Genes, exons and the 
direction of transcription from the UCSC genome browser are noted. Hashmarks at the top of the 
figure represent the positions of SNPs in the meta-analysis. Regional plots were generated using 
LocusZoom.
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of conditions such as obesity42. One particularly noteworthy finding 
in this regard is the association between BMI and common variants 
near GIPR, which may indicate a causal contribution of variation 
in postprandial insulin secretion in the development of obesity. In 
most instances, the loci identified by the present study harbor few, if 
any, annotated genes with clear connections to the biology of weight 
regulation. This reflects our still limited understanding of the biology 
of BMI and obesity-related traits and is in striking contrast with the 
results from equivalent studies of certain other traits (such as autoim-
mune diseases or lipid levels). Thus, these results suggest that much 
of the biology that underlies obesity remains to be uncovered and 
that GWAS may provide an important entry point for investigation. 
In particular, further examination of the associated loci through a 
combination of resequencing and fine mapping to find causal variants 
and genomic and experimental studies designed to assign function 
could uncover new insights into the biology of obesity.

In conclusion, we performed GWAS in large samples to identify 
numerous genetic loci associated with variation in BMI, a common 
measure of obesity. Because current lifestyle interventions are largely 
ineffective in addressing the challenges of growing obesity43,44, new 
insights into the biology of obesity are critically needed to guide the 
development and application of future therapies and interventions.

URLs. LocusZoom, http://csg.sph.umich.edu/locuszoom; METAL, 
http://www.sph.umich.edu/csg/abecasis/Metal/.

METHODS
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Study design. We designed a multistage study (Supplementary Fig. 1) com-
prising a genome-wide association meta-analysis (stage 1) of data on up to 
123,865 genotyped individuals from 46 studies and selected 42 SNPs with P < 
5 × 10−6 for follow up in stage 2. Stage 2 comprised up to 125,931 additional 
genotyped individuals from 42 studies. Meta-analysis of stage 1 and stage 2 
summary statistics identified 32 SNPs that reached genome-wide significance 
(P < 5 × 10−8).

Stage 1 genome-wide association meta-analysis. Samples and genotyping.  
The GIANT consortium currently encompasses 46 studies with up to 
123,865 genotyped adult individuals of European ancestry with data on BMI 
(Supplementary Note). The samples from 46 studies, including between 276 
and 26,799 individuals each, were genotyped using Affymetrix and Illumina 
whole genome genotyping arrays (Supplementary Note). To allow for meta-
analysis across different marker sets, imputation of polymorphic HapMap 
European CEU SNPs (Supplementary Note) was performed using MACH45, 
IMPUTE46 or BimBam47.

Association analysis with BMI. Each study performed single marker asso-
ciation analyses with BMI using an additive genetic model implemented 
in MACH2QTL (Y. Li, C.J.W., P.S. Ding and G.R.A., unpublished data), 
Merlin48, SNPTEST46, ProbAbel49, GenABEL50, LME in R or PLINK51. BMI 
was adjusted for age, age2 and other appropriate covariates (for example, prin-
cipal components) and inverse normally transformed to a mean of 0 and a 
standard deviation of 1. Analyses were stratified by sex and case status (for 
samples ascertained for other diseases) (Supplementary Note). To allow for 
relatedness in the SardiNIA, Framingham Heart, Amish HAPI Heart and 
Family Heart studies, regression coefficients were estimated in the context 
of a variance component model that modeled relatedness in men and women 
combined with sex as a covariate. Before meta-analyzing the genome-wide 
association data for the 46 studies, SNPs with poor imputation quality scores 
(r 2.hat < 0.3 in MACH, observed/expected dosage variance < 0.3 in BimBam 
or proper_info < 0.4 in IMPUTE) and those with a minor allele count (MAC =  
2 × N × minor allele frequency) of < 6 in each sex- and case-specific stratum 
were excluded for each study. All individual GWAS were genomic control cor-
rected before meta-analysis. Individual study-specific genomic control values 
ranged from 0.983 to 1.104 (Supplementary Note).

Meta-analysis of stage 1 association results. Next, we performed the stage 1 
meta-analysis using the inverse variance method, which is based on  values 
and standard errors from each individual GWAS. To ensure consistency of 
results, we also performed the stage 1 meta-analysis using the weighted z-score 
method, which is based on the direction of association and P values of each of 
the individual studies. Both meta-analyses were performed using METAL (see 
URLs), and the correlation between the resulting –log10 P values was high (r > 
0.99). For the discovery of replicating variants, the results of the inverse vari-
ance meta-analysis were used followed by a final genomic control correction 
of the meta-analyzed results. The genomic control value for the meta-analyzed 
results before genomic control correction was 1.318.

Selection of SNPs for follow up. Forty-two lead SNPs, representing the forty-two 
most significant (P < 5 × 10−6) independent loci, were selected for replication 
analyses (stage 2) (Supplementary Table 1). Loci were considered independ-
ent when separated by at least 1 Mb. For some loci, the SNP with the strongest 
association could not be genotyped for technical reasons and was substituted 
by a proxy SNP that was in high LD with it (r2 > 0.8) according to the HapMap 
CEU data (Supplementary Table 1). We tested the association of these 42 
SNPs in 16 de novo and 18 in silico replication studies in stage 2.

Stage 2 follow up. Samples and genotyping. Directly genotyped data for the 
42 SNPs was available from a total of 79,561 adults of European ancestry from 
16 studies using Sequenom iPLEX or TaqMan assays (Supplementary Note). 
Samples and SNPs that did not meet the quality control criteria defined by 
each individual study were excluded. Minimum genotyping quality control 
criteria were defined as Hardy-Weinberg Equilibrium P > 10−6, call rate > 90% 

and concordance > 99% in duplicate samples in each of the follow-up studies.  
Association results were also obtained for the 42 most significant SNPs from 
46,370 individuals of European ancestry from 18 GWAS that had not been 
included in the stage 1 analyses (Supplementary Note). Studies included 
between 345 and 22,888 individuals and were genotyped using Affymetrix 
and Illumina genome-wide genotyping arrays. Autosomal HapMap SNPs were 
imputed using either MACH45 or IMPUTE46. SNPs with poor imputation 
quality scores from the in silico studies (r 2.hat < 0.3 in MACH or proper_info 
< 0.4 in IMPUTE), and SNPs with a MAC < 6 in each sex- and case-specific 
stratum were excluded.

Association analyses and meta-analysis. We tested the association between 
the 42 SNPs and BMI in each in silico and de novo stage 2 study separately as 
described for the stage 1 studies. We subsequently meta-analyzed  values and 
standard errors from the stage 2 studies using the inverse-variance method. 
The meta-analysis using a weighted z-score method was similar (the r between 
P values was >0.99) and included up to 249,796 individuals. Data was available 
for at least 179,000 individuals for 41 of the 42 SNPs. For one SNP (rs6955651 
in KIAA1505), data was only available for 125,672 individuals due to technical 
challenges relating to the genotyping and imputation of this SNP. Next, we 
meta-analyzed the summary statistics of the stage 1 and stage 2 meta-analyses 
using the inverse-variance method in METAL.

Assessment of population stratification. To assess for possible inflation of test 
statistics by population stratification, we performed a family-based analysis, 
which is immune to stratification, in 5,507 individuals with pedigree informa-
tion from the Framingham Heart Study using that the QFAM–within proce-
dure in PLINK. Effect sizes and directions in the Framingham Heart Study 
data are the  statistics reported by PLINK from the within-family analysis, 
and the P values are empirical and are based on permutation testing. For 
imputed SNPs, only those with r2.hat > 0.3 in MACH were analyzed using 
the best-guess genotypes from dosages reported by MACH. For the 32 loci in 
general and the 18 new loci in particular, the estimated effect sizes on BMI 
were essentially identical in the overall meta-analysis and in the Framingham 
Heart Study sample (Supplementary Note), and, as expected in the absence 
of substantial stratification, about half of the loci (18 out of 32 loci total and 10 
out of 18 new loci) had a larger effect size in the family-based sample. These 
results indicate that the genome-wide significant associations in our meta-
analysis are not substantially confounded by stratification.

In addition, we estimated the fixation index (Fst) for all SNPs to test whether 
the 32 confirmed BMI SNPs might be false-positive results due to population 
stratification. We selected five diverse European populations with relatively 
large sample sizes (Northern Finland Birth Cohort (NFBC), British 1958 Birth 
Cohort, SardiNIA, CoLaus and DeCODE) for this analysis. The mean Fst value 
for the 32 confirmed BMI SNPs was not significantly different from the mean 
Fst for 2.1 million non-BMI associated SNPs (t test P = 0.28), suggesting that 
the SNPs that are associated with BMI do not appear to have strong allele 
frequency differences across the European samples examined.

Follow-up analyses. Subsequently, we performed an extensive series of fol-
low-up analyses to estimate the impact of the 32 confirmed BMI loci in adults 
and children and to explore their potential functional roles. These follow-up 
analyses are described in detail in the Supplementary Note.

In brief, we estimated the cumulative effect of the 32 loci combined 
on BMI and assessed their predictive ability in obesity and BMI in the 
ARIC study. Association between the 32 confirmed BMI variants and over-
weight or obese status was assessed in stage 2 samples, and association with 
BMI in children and adolescents was examined in four population-based 
studies. Furthermore, we tested for association between the 32 SNPs and 
extreme or early-onset obesity in seven case-control studies of extremely 
obese adults and extremely obese children or adolescents. Data on the 
association between the 32 SNPs and height and weight were obtained from 
the stage 2 replication samples, and data on the association with related 
traits were extracted from previously reported genome-wide association 
meta-analyses for type 2 diabetes (Diabetes Genetics Replication and 
Meta-analysis (DIAGRAM) Consortium18), lipid levels (the Global Lipids 
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Genetics Consortium20) and glycemic traits (Meta-Analyses of Glucose 
and Insulin-related traits Consortium (MAGIC)19,21).

To discover potentially new pathways associated with BMI, we tested 
whether predefined biological processes or molecular functions that contain 
at least one gene within 300 kb of the 32 confirmed BMI SNPs were enriched 
for multiple modest BMI associations using MAGENTA33. We identified SNPs 
having r2  0.75 with the lead SNP that were likely non-synonymous, nonsense 
or which occurred within 5 bp of the exon-intron boundary and also evalu-
ated whether any of the 32 confirmed BMI SNPs tagged common CNVs. We 
examined the cis associations between each of the 32 confirmed BMI SNPs 
and expression of nearby genes in adipose tissue34,52, whole blood34, lym-
phocytes36,52 and brain35.

We evaluated the amount of phenotypic variance explained by the 32 BMI 
loci using a method proposed by the International Schizophrenia Consortium37 
and estimated the number of susceptibility loci that are likely to exist using a 
new method38 based on the distribution of effect sizes and minor allele fre-
quencies observed for the established BMI loci and the power to detect those 
effects in the combined stage 1 and stage 2 analysis.

We performed a conditional genome-wide association analysis to examine 
whether any of the 32 confirmed BMI loci harbored additional independent 

signals, and we also examined gene-by-gene and gene-by-sex interactions among 
the BMI loci. Dominant and recessive analyses were performed for the 32 con-
firmed BMI SNPs to test for non-additive effects.
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