
Nature Genetics  VOLUME 42 | NUMBER 11 | NOVEMBER 2010	 949

Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall 
adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis 
of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following 
up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, 
TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 
and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual 
dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13).  
These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal 
strong gene-by-sex interactions.

­discovery stage, up to 2,850,269 imputed and genotyped SNPs 
were examined in 32 GWAS comprising up to 77,167 participants 
informative for anthropometric measures of body fat distribution. 
We performed a fixed-effects meta-analysis of WHR, employing 
study-specific linear regression adjusted for BMI and age, stratified 
by gender, and using an additive genetic model. After genomic control 
adjustment per each individual study and in the meta-analysis, these 
analyses revealed a substantial excess of low P values (Fig. 1a,b).

We selected SNPs representing the top 16 independent (defined as 
being located >1 Mb apart) regions of association (discovery P < 1.4 × ­
10−6; Table 1) and evaluated them in 29 additional, independent stud-
ies (comprising up to 113,636 individuals) using a mixture of in silico 
data and de novo genotyping. In these follow-up studies, 14 of the 
16 SNPs analyzed showed strong directionally consistent evidence 
for replication (P < 1.0 × 10−3) and ten SNPs reached genome-wide 
significance (P < 5.0 × 10−8). Joint analysis of the discovery and 
­follow-up results revealed genome-wide significant associations for 
14 signals (with P values between 1.9 × 10−9 and 1.8 × 10−40; Table 1). 
Between-study heterogeneity was low (I2 < 30%) for all but two signals 
(GRB14 and LYPLAL1; Supplementary Note), and all 14 associations 
remained genome-wide significant in a random-effects meta-analysis 
(Supplementary Table 2).

One of these SNPs, rs4846567, is in linkage disequilibrium (LD) 
(r2 = 0.64, D′ = 0.84; HapMap European CEU population) with 
the previously reported WHR-associated variant near LYPLAL1 
(rs2605100)13. The remaining 13 loci were in or near genes not pre-
viously associated with WHR or other measures of adiposity: RSPO3, 
VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, 
LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and 
CPEB4 (Fig. 2). These 14 loci explain 1.03% of the variance in WHR ­
(after adjustment for BMI, age and sex), with each locus contributing 

Meta-analysis identifies 13 new loci associated with ­
waist-hip ratio and reveals sexual dimorphism in the 
genetic basis of fat distribution

Central obesity and body fat distribution, as measured by waist 
­circumference and WHR, are associated with individual risk of type 
2 diabetes (T2D)1,2 and coronary heart disease3 and with mortality 
from all causes4. These effects are independent of overall adiposity as 
measured by body mass index (BMI). WHR is of particular interest 
as a measure of body fat distribution because it integrates the adverse 
metabolic risk associated with increasing waist circumference with the 
more protective role of gluteal fat deposition with respect to diabetes, 
hypertension and dyslipidemia5,6.

There is abundant evidence that body fat distribution is influenced 
by genetic loci distinct from those regulating BMI and overall 
­adiposity. First, even after accounting for BMI, individual varia-
tion in WHR is heritable7,8, with heritability estimates ranging from ­
22%–61%7–10. Second, the striking abnormalities of regional fat depo-
sition associated with lipodystrophic syndromes demonstrate that 
genetic variation can have dramatic effects on the development and 
maintenance of specific fat depots11,12. Third, in a previous genome-
wide association analysis, we identified a locus near LYPLAL1 strongly 
associated with WHR independent of any effects on BMI13, provid-
ing proof of principle for the genetic control of body fat distribution 
distinct from that of overall adiposity.

Within the Genetic Investigation of Anthropometric Traits 
(GIANT) consortium, we performed a large-scale meta-analysis of 
genome-wide association studies (GWAS) informative for WHR using 
adjustment for BMI to focus discovery toward genetic loci associated 
with body fat distribution rather than overall adiposity14–16.

RESULTS
Genome-wide significant association of WHR with 14 SNPs
We conducted a two-stage study among individuals of European 
descent (Supplementary Table 1 and Online Methods). In the 
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from 0.02% (ZNRF3-KREMEN1) to 0.14% (RSPO3) of the variance ­
based on effect estimates in the follow-up stage.

Sexual dimorphism at several of the WHR loci
Given the known sexual dimorphism of WHR and the evidence from 
variance decomposition studies that this reflects sex-specific genetic 
effects17, we performed sex-specific meta-analyses for the 14 WHR-
associated SNPs. These analyses included up to 108,979 women (42,735 
in the discovery stage and 66,244 in the follow up) and 82,483 men 
(34,601 in the discovery and 47,882 in the follow up). In a joint analysis 
of discovery and follow-up data, 12 of the 14 SNPs reached genome-
wide significance in women, but only three SNPs reached genome-wide 
significance in men (Table 2). At all but one locus (TBX15-WARS2), 
effect-size estimates were numerically greater in women. At seven of the 
loci (those near RSPO3, VEGFA, GRB14, LYPLAL1, HOXC13, ITPR2-
SSPN and ADAMTS9), there were marked differences in sex-specific 
β coefficients (with P values ranging from 1.9 × 10−3 to 1.2 × 10−13). ­

All loci displayed consistent patterns of sex-specific differences in both 
the discovery and follow-up studies (Table 2). These 14 loci explain 
1.34% of the variance in WHR (after adjustment for BMI and age) in 
women but only 0.46% of the variance in WHR in men.

Association with other anthropometric measures
By focusing on WHR after adjustment for BMI, our goal was to detect 
effects on body fat distribution independent of those influencing over-
all adiposity. As expected, we found very little evidence that known 
BMI-associated variants were detected in our WHR analysis. Of the ten ­
loci shown to be associated with BMI in previous GWAS14,15,18, only 
two showed nominally significant (P < 0.05) associations for BMI-
adjusted WHR in the discovery analysis (FTO, rs8050136, P = 0.03, ­
n = 77,074; TMEM18, rs6548238, P = 3.0 × 10−3, n = 77,016).

We also tested the 14 WHR-associated SNPs for their effect on 
BMI using data from up to 242,530 participants available from the 
GIANT consortium (including most of the studies available for WHR 
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Figure 1  Genome-wide association analyses for WHR in discovery studies. (a) Manhattan plot 
shows results of the WHR association meta-analysis in discovery studies (with P values on the 
y axis and the SNP genomic position on the x axis). Colored genomic loci indicate significant 
association (P < 5 × 10−8) detected previously (blue)13, in our GWAS stage (red) and after the 
meta-analysis combining GWAS data with that from the follow-up studies (orange). Two loci  
tested in the follow-up stage did not achieve genome-wide significance (green). (b) Quantile-
quantile plot of SNPs for the discovery meta-analysis of WHR (black) and after removing SNPs within 1 Mb of either the recently reported LYPLAL1 
signal (blue) or the 14 significant associations (green). The gray area represents the 95% CI around the test statistic under the null distribution.

Table 1  Fourteen SNPs associated with WHR at genome-wide significant levels

SNP Chr. Position (b36) Nearby genes EAa EAFb

Discovery Follow-up Combined

P β n P β n P β

SNPs evaluated in follow up achieving genome-wide significance
rs9491696 6 127,494,332 RSPO3 G 0.480 2.10 × 10–14 0.037 77,164 3.27 × 10–28 0.045 113,582 1.84 × 10–40 0.042

rs6905288 6 43,866,851 VEGFA A 0.562 4.72 × 10–10 0.033 77,129 1.18 × 10–16 0.039 95,430 5.88 × 10–25 0.036

rs984222 1 119,305,366 TBX15-WARS2 G 0.635 3.81 × 10–14 0.037 77,167 1.56 × 10–12 0.031 109,623 8.69 × 10–25 0.034

rs1055144 7 25,837,634 NFE2L3 T 0.210 1.49 × 10–8 0.034 77,145 3.26 × 10–18 0.043 113,636 9.97 × 10–25 0.040

rs10195252 2 165,221,337 GRB14 T 0.599 3.23 × 10–10 0.031 77,119 3.18 × 10–16 0.036 102,449 2.09 × 10–24 0.033

rs4846567 1 217,817,340 LYPLAL1 G 0.717 2.37 × 10–12 0.037 77,167 3.15 × 10–10 0.032 91,820 6.89 × 10–21 0.034

rs1011731 1 170,613,171 DNM3-PIGC G 0.428 1.72 × 10–10 0.031 77,094 7.47 × 10–9 0.026 92,018 9.51 × 10–18 0.028

rs718314 12 26,344,550 ITPR2-SSPN G 0.259 2.41 × 10–8 0.031 77,167 1.49 × 10–10 0.030 107,503 1.14 × 10–17 0.030

rs1294421 6 6,688,148 LY86 G 0.613 6.31 × 10–9 0.029 77,154 2.69 × 10–10 0.028 102,189 1.75 × 10–17 0.028

rs1443512 12 52,628,951 HOXC13 A 0.239 3.33 × 10–8 0.031 77,165 2.92 × 10–10 0.030 112,353 6.38 × 10–17 0.031

rs6795735 3 64,680,405 ADAMTS9 C 0.594 2.47 × 10–7 0.025 77,162 6.75 × 10–8 0.026 84,480 9.79 × 10–14 0.025

rs4823006 22 27,781,671 ZNRF3-KREMEN1 A 0.569 4.47 × 10–8 0.027 77,086 2.41 × 10–5 0.019 93,911 1.10 × 10–11 0.023

rs6784615 3 52,481,466 NISCH-STAB1 T 0.941 3.18 × 10–7 0.052 76,859 1.56 × 10–4 0.036 109,028 3.84 × 10–10 0.043

rs6861681 5 173,295,064 CPEB4 A 0.340 1.40 × 10–6 0.026 77,164 2.13 × 10–4 0.019 85,722 1.91 × 10–9 0.022

Further SNPs evaluated in follow up but not achieving genome-wide significance in the combined analysis
rs2076529 6 32,471,933 BTNL2 C 0.430 2.22 × 10–8 0.041 34,532 0.012 0.011 92,778 3.71 × 10–7 0.020

rs7081678 10 32,030,629 ZEB1 A 0.085 5.76 × 10–7 0.045 76,270 0.094 0.013 100,527 5.57 × 10–6 0.027

P values and β coefficients (per change of WHR-increasing allele) for the association with WHR on the inverse normal transformed ranked scale in the meta-analyses of discovery 
studies (up to 77,167 subjects), follow-up studies (up to 113,636 subjects) and both combined (up to 190,781 subjects). Fourteen of the sixteen SNPs examined in the follow-
up samples showed genome-wide significant results (P < 5 × 10–8) in the combined analysis. P values in the discovery stage were genomic control corrected per study and in the 
meta-analysis. Details on between-study heterogeneity are given in Supplementary Table 1c.
aEA, effect allele (WHR-increasing allele on the forward strand). bEAF, effect allele frequency. Chr., chromosome.
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association). Of the 14 WHR loci, four (near TBX15-WARS2, CPEB4, 
LYPLAL1 and GRB14) also showed evidence of association with BMI 
(4.1 × 10−3 ≤ P ≤ 3.2 × 10−6), with the WHR-increasing allele asso
ciated with decreased BMI (Supplementary Table 3). After adding 

an interaction term of SNP with BMI into the model, we observed 
that BMI modified the WHR association at the LY86 locus (P for 
interaction = 9.5 × 10−5), with a larger WHR effect among obese indivi
duals compared to non-obese individuals (Supplementary Note).
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Figure 2  Regional plots of 14 loci with genome-wide significant association. Shown is the SNP association with WHR in the meta-analysis of discovery 
studies for 14 loci (with –log10 P values on the y axis and the SNP genomic position on the x axis). In each panel, an index SNP is denoted with a purple 
diamond and plotted using the P attained across discovery and follow-up data (Table 1). Estimated recombination rates are plotted in blue. SNPs are 
colored to reflect LD with the index SNP (pairwise r2 values from HapMap CEU). Gene and microRNA annotations are from the UCSC genome browser.
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To determine whether the WHR-associated signals exert their 
effects primarily through an effect on waist or hip circumference, we 
performed meta-analyses for these specific phenotypes in the discov-
ery and follow-up studies (Supplementary Tables 1 and 3). Overall, 
we observed stronger associations for hip circumference than for waist 
circumference. Effect-size estimates were numerically greater for hip 
circumference than for waist circumference at 11 of the 14 loci, and 
there were nominal associations (P < 0.05) with hip circumference for 
12 of the WHR-associated loci but there were only four associations ­
with waist circumference. In both sexes, the WHR-associated loci dis-
playing nominal association with hip circumference always featured 
the WHR-increasing allele associated with reduced hip circumference. 
In contrast, we observed sexual dimorphism in the pattern of waist 

circumference associations. In women, the WHR-increasing allele at 
all 14 loci was associated with increased waist circumference, whereas 
this was only true for six of these loci in men (Fig. 3). At GRB14, for 
example, the WHR-increasing allele was associated with increased 
waist circumference in women (P = 3.6 × 10−4) but with decreased 
waist circumference in men (P = 6.8 × 10−3). These differences in the 
relationships between waist circumference, hip circumference and 
WHR underlie some of the sexual dimorphism in the patterns of 
WHR association.

Enrichment of association with metabolic traits
We evaluated the 14 WHR-associated loci for their relationships with 
related metabolic traits using GWAS data provided by trait-specific 
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Figure 3  Association of the 14 WHR loci with waist and hip circumference. β coefficients for waist circumference (WC, x axis) and hip circumference 
(HIP, y axis) in women and men derived from the joint discovery and follow-up analysis. P for WC and HIP are represented by color. In men, gray gene 
labels refer to those SNPs that were not significant in the male-specific WHR analysis. More details can be found in Supplementary Table 3.

Table 2  Evidence of sex-differences in the WHR association at seven of the 14 associated loci

SNP
Nearby 
genes

Men Women
Sex  

difference

Discovery Follow up Combined Discovery Follow up Combined Combined

P β P β P β P β P β P β P

rs9491696 RSPO3 1.68 × 10–4 0.026 6.97 × 10–9 0.036 1.05 × 10–11 0.031 1.62 × 10–12 0.047 8.84 × 10–22 0.053 1.93 × 10–32 0.050 1.94 × 10–3

rs6905288 VEGFA 0.066 0.013 2.09 × 10–4 0.025 7.38 × 10–5 0.020 7.72 × 10–13 0.052 3.14 × 10–15 0.051 2.27 × 10–26 0.052 5.20 × 10–6

rs984222 TBX15-
WARS2

3.32 × 10–9 0.041 2.43 × 10–5 0.029 9.41 × 10–13 0.035 1.21 × 10–7 0.036 1.33 × 10–8 0.033 1.02 × 10–14 0.034 0.951

rs1055144 NFE2L3 6.00 × 10–4 0.029 5.67 × 10–8 0.040 2.52 × 10–10 0.035 2.34 × 10–6 0.040 7.13 × 10–12 0.046 1.41 × 10–16 0.044 0.270

rs10195252 GRB14 0.201 0.009 0.114 0.011 0.043 0.010 6.33 × 10–15 0.053 4.95 × 10–21 0.054 3.84 × 10–34 0.054 1.41 × 10–11

rs4846567 LYPLAL1 0.191 0.010 0.982 0.000 0.358 0.005 4.84 × 10–18 0.064 8.12 × 10–17 0.055 4.95 × 10–33 0.059 1.18 × 10–13

rs1011731 DNM3-
PIGC

4.88 × 10–7 0.034 1.95 × 10–3 0.022 7.81 × 10–9 0.028 2.13 × 10–5 0.028 7.03 × 10–7 0.030 6.90 × 10–11 0.029 0.855

rs718314 ITPR2-
SSPN

0.177 0.010 2.02 × 10–3 0.022 1.41 × 10–3 0.017 8.29 × 10–10 0.047 4.21 × 10–9 0.038 2.41 × 10–17 0.042 4.67 × 10–4

rs1294421 LY86 4.18 × 10–3 0.020 7.00 × 10–6 0.030 1.63 × 10–7 0.025 3.44 × 10–8 0.038 7.32 × 10–6 0.026 2.40 × 10–12 0.031 0.357

rs1443512 HOXC13 0.184 0.011 9.74 × 10–4 0.024 9.45 × 10–4 0.018 1.43 × 10–9 0.048 3.09 × 10–8 0.035 6.38 × 10–16 0.040 2.23 × 10–3

rs6795735 AD-
AMTS9

0.011 0.017 0.614 0.004 0.027 0.011 7.85 × 10–7 0.033 2.95 × 10–11 0.042 1.92 × 10–16 0.038 8.50 × 10–5

rs4823006 ZNRF3-
KRE 
MEN1

6.87 × 10–3 0.019 0.094 0.012 1.94 × 10–3 0.015 6.86 × 10–8 0.037 3.81 × 10–5 0.024 3.24 × 10–11 0.030 0.032

rs6784615 NISCH-
STAB1

1.51 × 10–3 0.045 0.033 0.032 1.68 × 10–4 0.039 6.23 × 10–5 0.057 1.72 × 10–3 0.039 6.01 × 10–7 0.047 0.574

rs6861681 CPEB4 1.88 × 10–3 0.023 0.045 0.015 3.03 × 10–4 0.019 2.14 × 10–4 0.027 1.58 × 10–3 0.021 1.55 × 10–6 0.024 0.555

P values and β coefficients (per change of WHR-increasing allele in the sex-combined analysis as in Table 1) for the WHR association are given for the discovery (up to 34,601 
men and 42,735 women), the follow-up (up to 47,882 men and 65,780 women) and the combined meta-analysis (up to 81,301 men and 107,429 women). Also given are the P 
values for testing for difference between sex-specific β coefficients in the combined meta-analysis; SNPs with P for sex difference < 3.6 × 10–3 (0.05/14) were considered to show 
a significant sex difference.
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consortia19–21 as well as our de novo genotyped follow-up studies. 
As expected given the sample overlap between this GWAS data and 
our WHR GWAS data as well as information on known trait correla-
tions (Supplementary Table 4), we observed directionally consistent 
enrichment of associations (P < 0.05) between the 14 WHR-associated 
alleles and increased triglycerides, low-density lipoprotein (LDL) 
­cholesterol, fasting insulin and homeostasis model assessment 
(HOMA)-derived measures of insulin resistance (binomial P from 
3.2 × 10−4 to 1.8 × 10−8; Table 3 and Supplementary Table 5). For 
example, the WHR-increasing allele at GRB14 showed strong asso-
ciations with increased triglycerides (P = 7.4 × 10−9), fasting insulin ­
levels (P = 5.0 × 10−6) and insulin resistance (P = 1.9 × 10−6). Eleven 
of the 14 WHR-associated loci showed directionally consistent ­
associations with T2D, with three of these loci (at ADAMTS9, NISCH-
STAB1 and ITPR2-SSPN) reaching nominal significance (P < 0.05) 
(Table 3 and Supplementary Table 5). Because the association signals 
for correlated traits in this analysis were vulnerable to overestima-
tion given the overlap in the GWAS samples examined, we repeated 
these analyses and restricted the samples included to those from our 
de novo genotyped follow-up studies. Although this also resulted in a 
lower sample size, similar patterns of enrichment were still observed 
(Supplementary Table 5).

Pathway analysis and potential biological roles
To identify potential functional connections and pathway relation-
ships between genes mapping at the WHR-associated loci, we focused 
on the 95 genes located in a 2-Mb interval centered around each of 
the 48 independent SNPs that attained P < 1.0 × 10−5 in the WHR 
discovery studies.

First, we performed a survey of the published literature using 
GRAIL22 to search for connectivity between the genes and specific key-
words that describe these functional connections (Online Methods). 
Although there was no evidence after correcting for multiple testing 
that the connectivity between these genes was greater than chance, 
we identified eight genes with nominal significance (P < 0.05) for 
potential functional connectivity (PLXND, HOXC10, TBX15, RSPO3, 
HOXC4, HOXC6, KREMEN1 and HOXC11). The keywords associated 

with these connections included ‘vegf ’, ‘homeobox’, ‘patterning’, ­
‘mesenchyme’, ‘embryonic’, ‘development’ and ‘angiogenesis’.

Additionally, we performed pathway analyses using the PANTHER 
database23 based on the same set of 95 genes (Online Methods and 
Supplementary Note). This analysis generated some evidence for 
over-representation of ‘developmental processes’ (P = 5.8 × 10−8) and 
‘mRNA transcription regulation’ (P = 2.7 × 10−6) but neither of these 
factors retained nominal significance after adjustment for bias (for 
example, due to non-random SNP coverage in relation to genes) and 
the number of biological processes tested (Supplementary Note and 
Supplementary Table 6).

Finally, we examined the described functional roles of some of the 
most compelling candidates based on either proximity to the signal or 
the other analyses described in this paper. These analyses uncovered 
possible genetic roles in adipocyte development (TBX15), pattern 
formation during embryonic development (HOXC13), angiogenesis 
(VEGFA, RSPO3 and STAB1), Wnt and β-catenin signaling (RSPO3 
and KREMEN1), insulin signaling (ADAMTS9, GRB14 and NISCH), 
lipase activity (LYPLAL1), lipid biosynthesis (PIGC) and intracellular 
calcium signaling (ITPR2) (Supplementary Note).

Evaluation of copy number variants and non-synonymous changes
Both common and rare copy number variants (CNVs) have been 
reported to be associated with overall adiposity14,15,24,25, but the 
impact of CNVs on fat distribution has not been evaluated pre
viously. To examine the potential contribution of common CNVs 
to variation in WHR, we looked for evidence of association in our 
genome-wide association discovery meta-analysis using a set of 6,018 
CNV-tagging SNPs which collectively capture >40% of common 
CNVs that are greater than 1 kb in length26,27 (Online Methods and 
Supplementary Note).

One CNV-tagging SNP (rs1294421 in LY86) was observed among 
our 14 WHR-associated loci. This SNP is in strong LD (r2 = 0.98) with 
a 2,832-bp duplication variant (CNVR2760.1)27 located 12 kb from an 
expressed sequence tag (BC039678) and 87 kb from LY86 such that 
the duplication allele is associated with reduced WHR. The duplicated 
region consists entirely of noncoding sequence but includes part of a 
predicted enhancer sequence (E.5552.1)28.

To identify other putatively causal variants in our associated regions, 
we searched for non-synonymous coding SNPs in strong LD (defined 
as r 2 > 0.7) with the most strongly associated SNPs at each locus using 
data from the HapMap (Build 21) and 1000 Genomes Project (April 
and August 2009 releases). In this search, one lead SNP (rs6784615, 
at the NISCH-STAB1 locus) was correlated with non-synonymous 
changes in two nearby genes, DNAH1 (p.Val441Leu, p.Arg1285Trp 
and p.Arg3809Cys) and GLYCTK (p.Leu170Val). Fine-mapping and 
functional studies will be required to determine whether the DNAH1 
or GLYCTK SNPs or the LY86 CNV are causal for the WHR asso
ciations at these loci.

Effect of WHR associations on expression in relevant tissues
Expression quantitative trait locus (eQTL) data can implicate regional 
transcripts that mediate trait associations, and we therefore examined 
the 14 WHR-associated loci using eQTL data from human subcutaneous 
adipose tissue (SAT)29 (two separate sample sets, n = 610 and n = 603), 
omental fat30 (n = 740), liver30 (n = 518), blood29 (n = 745) and lympho
cytes31 (n = 830) (Online Methods and Supplementary Note).

At six of the loci, the WHR-associated SNP was either the strongest 
SNP associated with significant (P < 1.0 × 10−5) expression of a local 
(within 1 Mb) gene transcript or explained the majority of the associa-
tion between the most significant eQTL SNP and the gene transcript 

Table 3  WHR signals show enrichment of association with other 
traits related to metabolic disorders

Trait
Sample  

sizea

SNPs in  
concordant  
directionb

SNPs in  
concordant  
direction  

with P < 0.05c

n P n P

Triglycerides 43,826 14 6.10 × 10–5 7 1.79 × 10–8

HDL-C 45,561 13 9.16 × 10–4 4 3.20 × 10–4

LDL-C 43,889 10 0.090 1 0.298

Fasting glucose 63,849 10 0.090 1 0.298

Fasting insulin 54,883 13 9.16 × 10–4 5 1.62 × 10–5

HOMA-IR 53,625 13 9.16 × 10–4 6 6.17 × 10–7

2 h glucose 27,011   7 0.605 0 1.000

Type 2 diabetes 10,128d 11 0.029 3 4.62 × 10–3

The 14 WHR SNPs were tested for association with other traits by meta-analysis of 
GWAS data from previous reports19–21,39 together with our non-overlapping de novo 
genotyped follow-up studies. HDL-C, high density lipoprotein cholesterol; LDL-C, low 
density lipoprotein cholesterol; HOMA-IR, index of insulin resistance; 2 h glucose, 
glucose levels 2 h after an oral glucose challenge.
aMaximum number of subjects available for any of the 14 SNPs. bNumber of the 14 SNPs for 
which the WHR-increasing allele is associated with the trait in the concordant direction (that 
is, increased levels, except for HDL-C) and corresponding binomial P value to test whether 
this number is greater than that expected by chance and not accounting for the correlation 
between the traits. cNumber of SNPs in concordant direction that show P < 0.05 for the  
association with the trait and the corresponding binomial P value as in b. d4,549 cases,  
5579 controls.
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in conditional analyses (adjusted P > 0.05; Table 4). For example, the 
WHR-associated SNP rs1011731 (near DNM3-PIGC) was strongly 
associated with expression of PIGC in lymphocytes (P = 5.9 × 10−10); 
furthermore, rs1011731 is in high LD (r2 = 1.00, D′ = 1.00 from the 
HapMap CEU population) with the SNP with the strongest effect on 
PIGC expression (rs991790), and this cis eQTL association was abol-
ished by conditioning on rs1011731. These analyses therefore indicate 
that these two signals are coincident and that PIGC is a strong candidate 
for mediating the WHR association at rs1011731. We found similar evi-
dence for coincidence of the WHR signal with expression for rs984222 
(TBX15 in omental fat), rs1055144 (expressed sequence tag AA553656 
in SAT), rs10195252 (GRB14 in SAT), rs4823006 (ZNRF3 in SAT and 
omental fat) and rs6784615 (STAB1 in blood) (Table 4). Taken together, 
the overlap between trait association and gene expression at these loci 
suggests that the WHR associations may be driven through altered 
expression of PIGC, TBX15, AA553656, GRB1, ZNRF3 and STAB1.

RNA expression of gluteal and abdominal fat tissue
To determine whether genes within the WHR-associated loci showed 
evidence of differential transcription in distinct fat depots, we 

­compared expression levels in gluteal or abdominal SAT in 49 indi-
viduals. We focused on the 15 genes with the strongest credentials 
for causal involvement (on the basis of proximity to the lead SNP 
and/or other biological or functional data; Table 1) for which expres-
sion data were available. Five of these genes (RSPO3, TBX15, ITPR2, 
WARS2 and STAB1) were differentially expressed between the two 
tissues (using an F test, corrected for false discovery rate across the 
15 expressed genes, P < 0.05; Supplementary Table 7). This supports 
the hypothesis that, at some loci at least, the association with WHR 
reflects depot-specific differences in expression patterns.

DISCUSSION
Overall, our findings demonstrate that the genetic regulation of body 
fat distribution involves loci and processes that are largely distinct 
from those that influence BMI and risk of obesity. This finding is con-
sistent with the evidence that WHR displays substantial heritability 
even after adjustment for BMI. The loci that emerged from this study 
display no overlap with those shown to be associated with BMI either 
in previous reports14–16 or in the expanded meta-analysis recently 
completed by the GIANT consortium32.

Table 4  Expression quantitative trait locus analysis for 11 of the 14 WHR signals

WHR SNP Tissue Gene Effecta

WHR SNP association  
with transcript (P    )

Transcript  
peak SNPb LD (r 2)c

Peak SNP association  
with transcript (P   )

Unadj.
Adj. for  

peak SNP Unadj.
Adj. for  

WHR SNP

rs9491696 SAT-D RSPO3 + 1.10 × 10–7 0.03 rs1936795 0.26 2.20 × 10–13 7.40 × 10–8

rs984222 Omental TBX15 + 7.90 × 10–10 1.00 rs984222 1.00 7.90 × 10–10 1.00
Omental WARS2 + 5.11 × 10–36 0.03 rs10802075 0.27 1.31 × 10–163 1.33 × 10–88

Subcutaneous fat WARS2 + 1.67 × 10–25 0.01 rs10802075 0.22 3.88 × 10–110 1.01 × 10–63

Lymphocytes WARS2 − 4.30 × 10–18 5.47 × 10–5 rs2645305 0.27 5.57 × 10–40 6.88 × 10–26

Liver WARS2 + 2.57 × 10–17 0.07 rs1057990 0.26 6.69 × 10–59 1.97 × 10–32

SAT-D WARS2 + 1.10 × 10–18 0.51 rs1057990 0.26 5.80 × 10–130 5.80 × 10–100

Blood WARS2 + 6.10 × 10–17 0.11 rs1057990 0.26 6.30 × 10–75 1.10 × 10–54

rs1055144 SAT-D AA553656d − 1.20 × 10–11 0.96 rs7798002 0.95 7.20 × 10–12 0.32
SAT-M AA553656d − 2.46 × 10–7 0.65 rs1451385 0.77 5.93 × 10–8 0.38

rs10195252 SAT-D GRB14 + 4.40 × 10–11 1.00 rs10195252 1.00 4.40 × 10–11 1.00
SAT-M GRB14 + 5.51 × 10–6 1.00 rs10184004 1.00 5.51 × 10–6 1.00
Omental GRB14 + 1.02 × 10–13 1.00 rs10195252 1.00 1.02 × 10–13 1.00

SAT-M SLC38A11 − 3.93 × 10–6 0.66 rs10184126 0.18 7.76 × 10–44 8.57 × 10–34

SAT-D SLC38A11 − 3.70 × 10–9 0.35 rs10184126 0.18 2.40 × 10–94 7.40 × 10–82

rs1011731 Blood C1orf105 + 3.80 × 10–16 0.20 rs2157451 0.28 1.30 × 10–33 8.20 × 10–18

Lymphocytes PIGC − 5.87 × 10–10 1.00 rs991790 1.00 5.65 × 10–10 1.00
rs718314 Lymphocytes ITPR2 + 1.79 × 10–9 0.98 rs7976877 0.45 2.21 × 10–18 1.91 × 10–6

Blood ITPR2 − 2.40 × 10–9 0.20 rs2570 0.41 2.40 × 10–37 1.80 × 10–28

rs1294421 SAT-M BC039678 − 2.43 × 10–7 0.38 rs1294404 0.64 1.89 × 10–16 3.42 × 10–4

Omental BC039678 − 1.09 × 10–6 0.33 rs912056 0.71 8.28 × 10–17 4.26 × 10–5

rs6795735 SAT-D ADAMTS9 − 1.50 × 10–6 0.04 rs7372321 0.11 1.10 × 10–9 2.30 × 10–5

Omental AK022320 − 7.99 × 10–15 0.64 rs4521216 0.02 5.15 × 10–42 1.49 × 10–19

SAT-D AK022320 − 2.24 × 10–10 0.98 rs4521216 0.02 9.62 × 10–37 7.58 × 10–19

rs4823006 SAT-D ZNRF3 − 2.40 × 10–8 0.63 rs3178915 0.81 6.70 × 10–11 8.90 × 10–4

SAT-M ZNRF3 − 1.08 × 10–18 0.93 rs6005975 0.79 1.59 × 10–19 0.50
Omental ZNRF3 − 9.13 × 10–18 0.98 rs6005975 0.79 6.07 × 10–21 0.27

rs6784615 Blood STAB1 + 2.80 × 10–9 0.32 rs9846089 0.83 9.40 × 10–10 0.08
rs6861681 Lymphocytes CPEB4 + 3.79 × 10–22 0.89 rs7705502 0.87 4.95 × 10–29 2.00 × 10–3

Blood HMP19 + 1.60 × 10–16 0.97 rs10516107 0.83 1.10 × 10–21 4.30 × 10–6

Association between the 14 WHR SNPs and expression of transcripts located within 1 Mb of the WHR SNP in two sets of abdominal subcutaneous adipose tissue (SAT-D  
from deCODE and SAT-M from Massachusetts General Hospital), omental fat, liver, lymphocytes and blood (Supplementary Note). Results are given if the unadjusted WHR SNP 
association showed P < 1.00 × 10–5. Findings are highlighted in bold font where the WHR SNP was the transcript peak SNP or where the WHR signal and the cis eQTL signal 
were considered coincident (that is, the transcript peak SNP was highly correlated with the WHR SNP, r2 > 0.7 and the transcript peak association disappeared by adjusting on  
the WHR SNP, P > 0.05); see also Online Methods. Unadj., unadjusted; Adj., adjusted.
aEffect direction for the WHR-increasing allele. bSNP with the strongest association with the transcript in the region (transcript peak SNP). cCorrelation (HapMap CEU, build 36) between  
the WHR SNP and the transcript peak SNP. dThe transcript labeled AA553656 was detected as Contig27623_RC and corresponds to chromosome 7 locations 25,854,143–25,854,203 
(HapMap build 36).
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Another point of distinction between our findings and those for 
BMI relates to the evidence for sexual dimorphism that we observed 
at several of the WHR-associated loci. Sex differences in the regula-
tion of body fat distribution have long been acknowledged without a 
clear understanding of the underlying molecular mechanisms. These 
­differences become apparent during puberty and are generally attri
buted to the influence of sex hormones33. Consistent with our find-
ings, variance decomposition studies have shown that the genetic 
contribution to the overall variance in WHR, waist and hip circumfer-
ence is greater in women17. Although there is some evidence for loci 
with differential sex effects influencing lipids34, uric acid levels35 and 
risk of schizophrenia36, we are unaware of prior reports indicating 
such strong enrichment of female-specific associations for any other 
phenotype, including BMI32.

The primary objective of genetic discovery efforts is to charac-
terize the specific mechanisms involved in regulating the trait of 
interest. Despite the considerable challenges associated with moving 
from common variant association signals to defining causal alleles 
and pathways, we have identified strong candidates at several of the 
loci. For example, the cis eQTL data implicate GRB14 as a compelling 
candidate for the WHR association on chromosome 2, and we were 
able to show that the same GRB14 variants are also associated with 
triglyceride and insulin levels, consistent with previous association of 
this locus with high-density lipoprotein (HDL) cholesterol37. These 
inferences about the role of GRB14 are supported by evidence that 
Grb14-deficient mice exhibit improved glucose homeostasis despite 
lower circulating insulin levels, as well as enhanced insulin signaling 
in liver and skeletal muscle38. The signal near ADAMTS9 overlaps a 
previously-reported T2D locus39, and the lead SNP for WHR in our 
study is identical to the SNP displaying the strongest T2D association 
in a previous expanded T2D meta-analysis40. Given evidence that 
ADAMTS9 T2D risk alleles are associated with insulin resistance in 
peripheral tissues41, these findings are consistent with a primary effect 
of ADAMTS9 variants on body fat distribution. At the chromosome 
6 locus, VEGFA is the most apparent biological candidate given the 
presumed role of VEGFA as a mediator of adipogenesis42 and evidence 
that serum levels of VEGFA are correlated with obesity43,44. Finally, at 
the TBX15-WARS2 locus, TBX15 emerges as the strongest candidate 
based on the cis eQTL data in omental fat, marked depot-specific dif-
ferences in adipose tissue expression in mice and humans and associa-
tions between TBX15 expression in visceral fat and WHR45,46.

Our efforts to use pathway- and literature-mining approaches to 
look for functional enrichment of the genes mapping to associated 
regions met with only limited success but did provide some support 
for over-representation of developmental processes. Developmental 
genes have been implicated in fat accumulation and distribution45,46, 
and recent evidence supports a link between developmental genes, 
including HOXC13 (ref. 47) and TBX15 (refs. 45,48), and body fat ­
distribution. Developmental genes may in part determine the 
­adipocyte-specific expression patterns that have been observed in 
different fat depots45. Taken together, our findings point to a set 
of genes influencing body fat distribution that have their principal 
effects in adipose tissue. This is in contrast to the predominantly 
central (hypothalamic) processes that are involved in the regulation 
of BMI and overall adiposity49.

By providing new insights into the regulation of body fat dis-
tribution, the present study raises a number of issues for future 
­investigation. From the genetic perspective, re-sequencing, dense-
array genotyping and fine-mapping approaches will be required 
to characterize causal variants at the loci we have identified and 
to support further discoveries that may account for the substantial 

­proportion of genetic variance unexplained by our findings. From the 
clinical perspective, it will be important to explore the relationship 
of these variants to more refined measures of body fat distribution 
derived from detailed imaging studies, to use the variants identi-
fied to characterize the causal relationships between body fat distri
bution and related metabolic and cardiovascular traits and to explore 
population differences in patterns of body fat distribution. Efforts to 
tackle overall obesity through therapeutic or lifestyle-based modula-
tion of overall energy balance have proved extremely challenging to 
implement, and the manipulation of processes associated with more 
­beneficial patterns of fat distribution offers an alternative perspective 
for future drug discovery.

URLs. LocusZoom, http://csg.sph.umich.edu/locuszoom/.

Methods
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Phenotype definition. Our main phenotype was waist-hip ratio (WHR), 
a widely available surrogate for body fat distribution50. For each cohort, we 
computed age-adjusted residuals for men and women separately with BMI 
adjustment (RAW phenotype) and transformed these by the inverse standard 
normal function (UNIFORM phenotype) to ensure comparability across studies, 
between men and women and also with other phenotypes. Cohorts with related 
males and females also provided sex-combined phenotypes. For each cohort, we 
also computed the same UNIFORM transformations for the other anthropomet-
ric measures of waist circumference, hip circumference and BMI.

When adjusted for BMI, WHR was associated with android to gynoid ratio, 
visceral abdominal fat (VAT) and, to a lesser degree, subcutaneous abdominal 
fat (Supplementary Table 4). We also observed correlations between WHR 
adjusted for BMI and HDL, triglycerides and fasting insulin of similar mag-
nitude to correlations previously published between these traits and VAT51, 
BMI52,53 or percent body fat52,53. The phenotype used for this investigation 
was therefore WHR adjusted for BMI.

Contributing studies. This GWAS on WHR adjusted for BMI involved 32 dis-
covery studies with up to 77,167 individuals (34,601 men and 42,735 women) 
to identify potentially interesting SNPs for central obesity. Our total sample 
size in the discovery stage reached 80% power to detect SNP associations that 
explained as small as 0.025% of trait variance. We included 11 studies with in 
silico genotype information and 18 studies with de novo genotyping for the 
follow-up SNP set to provide up to 113,636 individuals (up to 47,882 men and 
66,244 women) for the follow-up stage. Specific sample sizes varied slightly 
per SNP. Sample sizes, design, sample quality control and descriptive statistics 
for all studies are given in Supplementary Tables 1 and 8. All studies were 
conducted according to the declaration of Helsinki, informed consent was 
obtained from all participants and the studies were approved by the ethics 
committees of all participating institutions.

Genotypes. Each discovery study and in silico follow-up study used geno-
types from a genome-wide SNP chip to impute up to 2.85 million SNPs using 
HapMap CEU (build 21) as reference. The de novo genotyped follow-up studies 
used genotypes for the SNPs selected for follow-up or their proxies. Study-
specific details on genotyping platforms, imputation methods and SNP quality 
control are given in Supplementary Table 9.

Standardized association analysis on the study level. In each discovery study, 
SNP associations for WHR adjusted for BMI were computed by linear regression 
on the UNIFORM phenotype separately for men and women. Where appropri-
ate, sex-combined analyses were also performed to account for the relatedness 
between men and women. For comparison with the other anthropometric meas-
ures, the same statistical models without adjustment for BMI were used to com-
pute SNP associations with BMI, waist circumference and hip circumference. All 
analyses accounted for the uncertainty introduced by the genotype imputation 
by using the expected allele dosage as an independent variable in the regression 
model. For the follow-up studies, the same models were computed as for the 
discovery studies, complemented by linear regression on the RAW phenotype to 
yield effect sizes on the original phenotype scale. Details on the software used for 
study-specific association analyses are given in Supplementary Table 9.

Quality control on the study level. All study-specific files underwent exten-
sive and standardized quality control procedures before meta-analysis. All 
files were checked for completeness and plausible descriptive statistics on all 
variables. Particularly, the ranges of β estimates were checked for potential 
issues in phenotype transformation. Allele frequencies and compliance with 
HapMap alleles were checked. In addition to the study-specific quality control 
filters, we included SNP results of a study in our meta-analysis only if (i) the 
SNP imputation quality score was above 0.3 for MACH imputation or BimBam 
or was above 0.4 for other methods (for example, IMPUTE) and (ii) MAF times 
the number of subjects for a SNP in one study was greater than 3 to ensure low 
genotype imputation error and robust study-specific statistics54–56.

Meta-analyses of WHR association. Meta-analyses of WHR discovery studies 
for the UNIFORM phenotype (see above) used (i) men- and women-specific ­

results for studies where men and women were unrelated or the sex-
­combined results where men and women were related, (ii) men-only results or ­
(iii) women-only results. We applied the inverse variance weighted fixed effect 
model to pool β estimates57. For discovery studies, P values and standard ­
errors of each study were genomic control corrected and a second GC ­
correction was applied on the meta-analyzed results to avoid inflation of the 
test statistics due to population stratification58. The overall inflation factor (λ) 
of the meta-analyzed results was 1.09 for our WHR analysis. Plots of associa-
tion were generated using LocusZoom (see URLs).

From the list of SNPs with P < 5.0 × 10−6 in a preliminary version of our 
discovery meta-analysis, we generated a list of 16 independent SNPs for follow 
up by starting with the SNP with the smallest P value and adding SNPs located 
>1 Mb to either side of any already selected SNP. All SNPs with P < 1.0 × 10−5 
in the WHR discovery analysis beyond those already in Table 1 are given in 
Supplementary Table 10.

We performed a meta-analysis of WHR follow-up studies for the selected 
SNPs using the same models as for the discovery study without GC correc-
tion. Additionally, we performed a meta-analysis for the RAW phenotype 
(see above). For the joint meta-analysis, results of discovery and follow-up 
meta-analyses on the UNIFORM phenotype were combined using a fixed 
effect model.

To check for potential β-scaling inconsistencies, we also applied the sample-
size weighted z score method, which pools the P values59,60. No inconsisten-
cies were found. We also tested for between-study heterogeneity using the Q 
statistics and the I2 measure and computed random effect model estimates 
for comparison with fixed effect model estimates. Results are reported for the 
fixed effect model throughout this paper if not stated otherwise.

The men-specific pooled β estimates were compared to women-specific 
pooled β estimates using t statistics (Supplementary Note).

The percentage of the variance of the analyzed trait, WHR, that was 
explained by one SNP was computed by comparing the meta-analyzed esti-
mated SNP effect (using the RAW phenotype) with the phenotypic variance of 
one population-based example study and taking the genotypic variance using 
the average allele frequency into account (Supplementary Note).

Meta-analysis for other anthropometric measures. We also performed meta-
analyses for BMI, waist circumference and hip circumference associations 
using the same models as for WHR.

Evidence of association with other metabolic traits. We obtained the associa-
tion results for the 14 SNPs reaching genome-wide significance for metabolic 
traits (HDL cholesterol, LDL cholesterol, triglycerides, fasting glucose, fast-
ing insulin, homeostasis model assessment-insulin resistance (HOMA-IR) 
and 2-h glucose levels) and T2D from other GWAS consortia with published 
data19–21,39. For all traits except T2D, we meta-analyzed the consortia results 
with several of our de novo genotyped follow-up studies. To assess whether 
the observed concordance between effect directions was more than expected 
by chance, we tested the overall number of concordant SNPs compared to a 
binomial draw with a null expectation of P = 0.5. To investigate whether the 
observed number of nominally significant concordant associations with effects 
in the same direction was due to chance, we performed the same test on SNPs 
with P < 0.05 using a one-sided test and a null expectation of P = 0.05. These 
binomial P values do not take into account that WHR is correlated with the 
metabolic traits, and therefore, concordance found also reflects the correlation 
of trait values. The enrichment was considered significant if the binomial P 
was less than 0.05. As there was some overlap between this consortium data 
on metabolic traits with our GIANT discovery, we repeated the analyses and 
restricted the data to our de novo genotyped follow-up studies.

Pathway analyses. We investigated potential functional connections and 
pathway relationships between genes mapping at the WHR-associated loci. 
We selected 48 independent SNPs from the discovery WHR meta-analysis 
with P < 1 × 10−5 and derived 95 neighboring genes (Supplementary Note). 
From these 95 genes, 94 were available to be tested for connectivity patterns 
using GRAIL22 (hg18 assembly of the human genome, HapMap build 21 and 
PubMed queries from March 2009), which uses literature-mining techniques 
to rank the best gene based on its relatedness to other listed genes, applying 
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corrections for multiple hypothesis testing and gene density within regions. 
Furthermore, 89 of the 95 genes were available in the PANTHER database of 
25,431 genes and were tested for correlation with 240 biological processes 
classified in the database (Supplementary Note)23.

Copy number variation (CNV) analyses. We examined SNPs known to pro-
vide robust tags with high LD for CNVs in European-descent studies by using 
6,018 CNV-tag SNPs for which we had WHR discovery meta-analysis results 
(Supplementary Fig. 1, Supplementary Table 11 and Supplementary Note).

eQTL analyses. We examined the association between the 14 identified WHR 
SNPs and expression transcripts of nearby genes in five different tissues: ­
lymphocytes, SAT, omental fat, liver and blood (details on methodology and 
tissue samples in the Supplementary Note). We used conditional analyses 
and r2 measures to identify the subset of significant cis eQTL signals that were 
likely to be coincident with WHR association signals.

Differences in gene expression between subcutaneous and gluteal fat. We 
analyzed differences in expression in subcutaneous gluteal fat tissue as com-
pared to subcutaneous abdominal fat tissue from 49 individuals available from 
the MolOBB study. The P values from the F test fitting a linear mixed model 
were adjusted for multiple testing for the 15 expressed genes using the false 
discovery rate61 and considered significant if this P was greater than 0.05 
(Supplementary Note).
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Corrigendum: Meta-analysis identifies 13 new loci associated with waist-hip 
ratio and reveals sexual dimorphism in the genetic basis of fat distribution
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In the version of this article initially published, there were errors in Table 1. Specifically, for eight SNPs, the effect allele frequencies were reversed. 
The correct effect allele frequencies for rs9491696, rs984222, rs4846567, rs1011731, rs718314, rs1294421, rs6795735 and rs2076529 are 0.480, 
0.635, 0.717, 0.428, 0.259, 0.613, 0.594 and 0.430, respectively. These errors have been corrected in the HTML and PDF versions of the article.
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