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Abstract

White blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among
healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the
heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and
11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal
hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE,
HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with
total WBC count and five WBC subtypes at seven different genomic loci (total WBC count—6p21 in the HLA region, 17q21 near
ORMDL3, and CSF3; neutrophil count—17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count—6p21, 19p13
at EPS15L1; monocyte count—2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2), including three previously
reported associations and seven novel associations. To investigate functional relationships among variants contributing to
variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering
algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types.
Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from
our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the
proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies
conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant
associations across populations of diverse ancestral backgrounds.
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Introduction

The WBC count, a classic marker of immune or inflammatory
response, varies substantially among healthy individuals. The
counts of constituent cell subtypes comprising the WBC count
measure are assayed as part of a standard clinical WBC differential
test. While the WBC count and WBC differential count are often
obtained to assess for evidence of infection or underlying
inflammation, prospective epidemiologic studies have consistently
linked higher WBC counts, within the clinically designated normal
range, along with other inflammatory markers, to increased risk of
coronary artery disease, cancer, and total mortality [1,2,3,4,
5,6,7,8,9,10]. Studies are often not consistent on the specific WBC
subpopulations involved, but granulocytes, in general, and
neutrophils, in particular, are most often implicated in these
observations [11,12]. In the general population, the total WBC
count is also directly associated with many cardiovascular disease
risk factors, such as higher blood pressure, cigarette smoking,
adiposity, lower socioeconomic status, and higher levels of plasma
inflammatory markers [13].

WBC counts are also moderately heritable [14], with heritability
estimates varing from approximately 0.14 to 0.4 across total
leukocyte count and cell subtypes, as assessed in a Sardinian
population, with the highest heritability estimates for monocyte
counts [14]. In addition, the substantially lower neutrophil count
and total WBC count in African Americans compared to
European-ancestry individuals seems to be at least partially
explained by a regulatory variant in the Duffy Antigen Receptor
for Chemokine (DARC) gene, which accounts for ,20% of total
variation in the measures [15,16]. Recent studies have sought to
investigate the common genetic variants associated with several
blood count traits in European-ancestry and Japanese individuals,

but have not focused specifically on the multiple cell types
comprising the total WBC count measurement [17,18,19,20].

In the current study, we sought to identify and replicate
common genetic variants that influence normal variation in six
WBC phenotypes commonly measured in the clinical setting and
in population studies that comprise the CHARGE Consortium
[21], the HaemGen Consortium [18] and independent collabo-
rative studies. We utilized genome-wide association study (GWAS)
data and meta-analytic techniques to identify 10 genome-wide
significant loci in a study of over 31,000 individuals (Table 1),
examining variants possibly associated with total WBC count,
three granulocyte phenotypes (neutrophil, basophil and eosinophil
counts), and two non-granulocyte phenotypes (lymphocytes and
monocytes). We also investigated the shared functional connec-
tivity of identified loci across phenotypes with regards to both
known biological pathways and nearby gene expression effects. As
previous research has shown strong selective pressures at the locus
identified to affect WBC counts in African American popula-
ftions, we examined the possibility of recent selective effects at
significantly associated loci in European ancestry individuals
[15,16]. Additional efforts were made in collaboration with
RIKEN and COGENT investigators to identify homogenous
associations across populations of diverse ancestral backgrounds.

Results

In the discovery meta-analysis of 19,509 subjects from seven
cohorts, we identified 11 genome-wide significant associations
with six white cell phenotypes (total WBC, neutrophil, basophil,
eosinophil, lymphocyte and monocyte counts, see Table 1,
Table S1, Figure 1). Further, we found strong evidence for
replication of 10 of the 11 trait-locus associations in 11,823
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independent samples from 10 GWAS cohorts who contributed
summary statistics for SNPs of interest. The discovery analysis
results (Figure 1 and Figures S1, S2, S3, S4, S5, S6, S7, S8, S9,
S10 for details), and the results of replication testing for the 10
replicated trait-loci are summarized in Table 2. These results
are presented in greater detail for all genome-wide significant
SNPs in Table S2.

Total WBC count was associated with two independent loci in
the discovery phase of analyses; the first locus was on chromosome
6p21 encompassing a region from 31,131,127 bp to 31,161,
846 bp near HLA and PSORS1 gene families, and the second locus
on chromosome 17q21 from 35,345,186 bp to 35,470,048 bp near
candidate genes ORMDL3 and CSF3. Both loci showed indepen-
dent replication (Table 2). Neutrophil count was associated with a
196,381 bp region on chromosme 17q21 containing 46 genome-
wide significant SNPs from the discovery phase. This region
overlaps the locus on chromosome 17q21 identified for the total
WBC count phenotype and showed positive association in
replication testing at all but 2 SNPs. Basophil count was associated
with one SNP, rs4328821 on chromosome 3q21 near RPN1 and
C3orf27. This SNP showed a significant positive association
between basophil count and minor allele dosage (minor allele
frequency 0.110, p-value in discovery phase 2.58E-08, p-value in
replication phase 8.40E-06). No regions showed genome-wide
significance for association with eosinophil count.

Lymphocyte count was associated with two loci, with one locus
on chromosome 6p21 overlapping with the chromosome 6p21
total WBC count locus. The second locus associated with
lymphocyte counts is on chromosome 19p13, from 16,32,871 bp
to 16,429,197 bp at EPS15L1 and was successfully replicated.
Monocyte count was associated with the largest number of
independent hits for any of the traits, with five loci identified in the
discovery analysis, four of which showed significant associations in
replication testing. These four loci include two intergenic regions
(.100 kb to nearest known genes) on chromosome 8q24 (from
130,672,817 to 130,693,287) and chromosome 9q31 (112,917,232
to 113,073,157). We also identified a novel association on
chromosome 2q31 (182,027,546 to 182,036,459) near ITGA4,
and a single genome-wide significant SNP on chromosome 3q21,

which is located 18,866 bp from the SNP significantly associated
with basophil count (r2 = 0.076, D9 = 0.841). The monocyte-
associated locus on chromosome 1q22 contained only one
genome-wide significant SNP which failed to replicate and is not
included in Table 2 (denoted by rs17131683, which exhibited a
replication p-value of 0.770 but a consistent negative effect
associated with the A allele).

Many of the loci described in this report contain genome-wide
significant SNPs spread throughout much of each locus suggestive
of either extensive LD or multiple association signals at each locus.
For loci described in Table S2 (except those containing less than 3
genome-wide significant SNPs), conditional analyses were con-
ducted using the allele dosage of the most significant SNP per locus
as a covariate in a subset of discovery cohorts (AGES, ARIC,
BLSA, Health ABC and InChianti). Statistical models were
identical to those used in the discovery analyses except for the
additional SNP covariates. No SNPs analyzed remained significant
after correcting for 147 tests, showing that only one signal of
association exists per locus. The complete results for these analyses
are evident in Table S3. As each locus accounts for only one
unique signal per trait, adjusted r2 estimates were calculated for
each trait across loci within this subset of cohorts, and may be
found in Table 2.

To assess the independence of associated SNPs from the total
WBC count measurement, all genome-wide significant SNP
associations for white cell subtypes (Table S2) were re-analyzed
as per the discovery phase analysis methods adjusting for total
WBC count as an additional covariate in a subset of discovery
cohorts (AGES, ARIC, BLSA, Health ABC and InChianti). After
Bonferroni correction for 97 independent tests at least one SNP
per locus remained significant, suggesting some independence
from the total WBC measure in the SNP associations. The
extended results of this analysis and a table of r2 values for the
phenotypes of interest based on the same subset of discovery
cohorts may be found in Table S4 and Table S5.

These results demonstrate a high degree of relatedness across
traits, with individual loci affecting multiple WBC traits, that may
be pleiotropic to some degree or due to the biological relatedness
of the traits. Neutrophils are the most abundant WBC subtype,
and the locus on chromosome 17q21 associated with both total
WBC count and neutrophil count independently based on
conditional analyses described above. In this region, 38 SNPs
were common to both traits in the discovery analysis, and these
SNPs showed identical directions of effects across both traits. In
the chromosome 3q21 between C3orf27 and RPN1, rs9880192 was
associated with monocyte count and rs4328821 was associated
with basophil count, suggesting pleiotropy in this region. The
region on chromosome 6p21 near the PSORS1 family of genes as
well as HLA-C and HLA-B contains associated SNPs with both
total WBC count and lymphocyte count, although, interestingly,
spatially overlapping SNPs failed to replicate in the other trait,
further suggesting independence of effects seen in conditional
analyses of all loci.

To further examine the functional connectivity of these loci
across white blood cell phenotypes, the Gene Relationships
Among Implicated Loci package (GRAIL, http://www.broad.
mit.edu/mpg/grail/) was utilized to mine PubMed archives using
textual analyses of known functional associations to identify
concurrent effects and relationships across phenotypes [22]. In
brief, GRAIL incorporates functional annotations from text
mining related to specific genomic loci, usually genome-wide
association study results, to assess the functional inter-relatedness
of genes in linkage disequilibrium with the regions of interest and
construct networks of related genes sharing biological function. In

Author Summary

WBC traits are highly variable, moderately heritable, and
commonly assayed as part of clinical complete blood
count (CBC) examinations. The counts of constituent cell
subtypes comprising the WBC count measure are assayed
as part of a standard clinical WBC differential test. In this
study we employed meta-analytic techniques and identi-
fied ten associations with WBC measures at seven genomic
loci in a large sample set of over 31,000 participants.
Cohort specific data was supplied by the CHARGE,
HeamGen, and INGI consortia, as well as independent
collaborative studies. We confirm previous associations of
WBC traits with three loci and identified seven novel loci.
We also utilize a number of additional analytic methods to
infer the functional relatedness of independently implicat-
ed loci across WBC phenotypes, as well as investigate
direct functional consequences of these loci through
analyses of genomic variation affecting the expression of
proximal genes in samples of whole blood. In addition,
subsequent collaborative efforts with studies of WBC traits
in African-American and Japanese cohorts allowed for the
investigation of the effects of these genomic variants
across populations of diverse continental ancestries.
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our analyses, we utilized GRAIL to survey the functional
relatedness of all regions containing significant results passing
Bonferroni correction in both the discovery and replication phases.
We identified four clusters of related genes with false-discovery
rate adjusted p-values,0.05 out of the 49 gene clusters generated
by the GRAIL package, which are described in Figure 2 and
Table S6. All four clusters show significant interconnectivity
between genes proximal to loci on chromosome 17q21 associated
with total WBC and neutrophil counts and the chromosome
19p13 locus associated with lymphocyte count. The two most
significant clusters also show relationships between genes proximal

to the previously mentioned loci and candidate genes at the
chromosome 8q24 region associated with monocyte counts. Genes
at the chromosome 17q21 locus associated with both total WBC
and neutrophil counts appeared in all significant pathways
identified in the GRAIL analyses, suggesting biological connec-
tivity across both granulocyte and non-granulocyte cell lineages.
Candidate genes from the gasdermin (GSDML) and mediator
complex subunit (MED) families were highly enriched in the
significant gene clusters and comprised 37.5% of genes in these
clusters. These results suggest shared biological pathways between
these genes and cell proliferation among WBC subtypes associated

Table 1. Descriptive statistics of contributing cohorts.

Discovery Phase

Study AGES ARIC BLSA FHS Health ABC InChianti RS

Total WBC

WBC count 6.010 (1.793) 5.933 (1.400) 5.441 (1.099) 4.07 (0.235) 6.166 (1.373) 5.965 (1.260) 6.487 (1.496)

Granulocytes

Basophils 0.029 (0.025) 0.025 (0.033) 0.012 (0.015) N.A. 0.060 (0.031) 0.026 (0.019) N.A.

Eosinophils 0.207 (0.147) 0.104 (0.103) 0.174 (0.093) N.A. 0.173 (0.102) 0.171 (0.091) N.A.

Neutrophils 3.511 (1.295) 3.646 (1.118) 3.149 (0.868) N.A. 3.658 (1.010) 3.626 (1.020) N.A.

Non-granulocytes

Lymphocytes 1.726 (0.943) 1.814 (0.479) 1.636 (0.445) N.A. 1.741 (0.580) 1.834 (0.527) 2.500 (0.781)

Monocytes 0.538 (0.177) 0.344 (0.139) 0.406 (0.145) N.A. 0.534 (0.150) 0.310 (0.091) N.A.

Covariates

% Female 58.0 53.2 48.7 51.2 47.1 57.0 59.5

% Current smoker 12.7 21.1 2.7 42.2 4.3 17.7 22.6

Age in years 76.4 (5.5) 54.3 (5.7) 66.8 (13.9) 35.9 (10.4) 75.7 (2.8) 68.1 (15.3) 69.1 (9.0)

Sample Sizes

Total N 3217 4846 337 3909 1075 1014 5111

Replication Phase

Study HVH INGI-CARL INGI-FVG INGI-VB KORAF3 KORAF4 RSII SORBS TwinsUK UKBS1

Total WBC

WBC count 6.932
(2.076)

7.176
(2.900)

5.867
(1.414)

6.250
(1.242)

6.781
(1.671)

5.904
(1.638)

6.468
(1.388)

5.204
(1.159)

5.926
(1.530)

7.255
(1.464)

Granulocytes

Basophils 0.068
(0.034)

N.A. N.A. 0.029
(0.014)

N.A. N.A. N.A. 0.027
(0.014)

N.A. 0.100
(0.001)

Eosinophils 0.204
(0.158)

N.A. N.A. 0.185
(0.100)

N.A. N.A. N.A. 0.150
( 0.082)

N.A. 0.182
(0.092)

Neutrophils 4.193
(1.586)

N.A. N.A. 3.444
(0.917)

N.A. N.A. N.A. 2.853
(0.837)

N.A. 4.268
(1.105)

Non-granulocytes

Lymphocytes 1.932
(0.799)

2.492
(0.682)

2.083
(0.141)

2.141
(0.549)

N.A. N.A. 2.236
(0.568)

1.749
(0.531)

N.A. 2.293
(0.593)

Monocytes 0.534
(0.189)

0.415
(0.346)

0.786
(0.232)

0.451
(0.126)

N.A. N.A. 0.455
(0.164)

0.424
(0.119)

N.A. 0.446
(0.129)

Covariates

% Female 53.0 58.2 59.4 57.0 50.6 51.2 57.2 40.1 100.0 52.0

% Current smoker 8.4 25.5 21.7 14.1 13.3 14.7 16.1 12.9 N.A. N.A.

Age in years 68.1 (9.1) 44.2 (20.0) 48.3 (19.3) 54.8 (18.0) 62.5 (10.1) 60.9 (8.9) 67.8 (7.1) 47.9 (16.0) 50.9 (13.4) 43.4 (12.4)

Sample Sizes

Total N 403 510 1045 1405 1640 1813 1518 785 1466 1238

The numbers above are thousands of cells per milliliter of blood. All values are presented as mean (SD), except where % indicated.
doi:10.1371/journal.pgen.1002113.t001
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with these genomic regions, although as emphasized in conditional
analyses, these effects at these loci remain to some degree
independent of the total WBC measure.

We also examined possible functional consequences of individ-
ual SNP associations by analyzing whole blood genome-wide gene
expression data from the InChianti study to identify associations
between SNPs found to be significant in the meta-analysis and cis
changes in gene expression. All SNPs significant in both the
discovery and replication phases for all phenotypes were used in
the expression analysis. Each SNP in this dataset which was within
500 kb of an expression probe was treated as a possible expression
quantitative trait locus (eQTL). For 85 SNPs in our subset of
significant meta-analysis results, we tested at total 741 candidate
eQTL associations using multivariate linear regression. This
analysis tested each SNP in the subset for an association with
each expression probe within 500 kb. After Bonferroni correction
for the 741 tests conducted, 36 SNPs in the chromosome 17q21
locus associated with total WBC count and neutrophil count in the
meta-analysis were also significantly associated with cis-expression
levels. In total, these 36 SNPs were associated with three
expression probes, 2 probes tagging transcripts in the GSDML
gene (probes ILMN_2347193 and ILMN_1666206) and another
probe tagging a single probe in ORMD3L (probe ILMN_1662174),
for a total of 103 signficicant eQTLs (Figure 3). Both probes in
GSDML were highly correlated (r2 = 0.582), although neither
GSDML probe was strongly corellated with the probe of interest in
the ORMD3L gene (r2,0.200). With each SNP’s minor allele as
the point of reference, all effect directions for significant meta-
analysis and eQTL associations were concordant, showing a
strong correlation between the effect sizes in the meta-analysis and
eQTL analysis, suggesting that the effect of the identified SNPs on
the corresponding WBC trait may be transcriptionally mediated.
For example, the correlation of effect estimates between the eQTL
and meta-analysis for neutrophil associated SNPs also associated
with the ILMN_1666206 probe highly significant, with an r2 of
0.898. For details of all eQTLs tested, please refer to Table S7 and
the Methods and Materials section.

Previous studies of WBC genetic variation in African American
populations have shown evidence of WBC associated loci in a
region of high selective pressures, with the putative functional SNP
rs2814778 being almost fixed in frequency in sub-Saharan African
populations where malaria is endemic [15]. We therefore
undertook an investigation of recent selective pressures acting
upon SNPs identified associated with WBC phenotypes in
European-ancestry populations. Evidence for selection for all 10
significant trait-loci from the meta-analysis was evaluated by
mining HapMap2 CEU data. Integrated Haplotype Scores (iHS)
were used to quantify selection at each locus based on
homozygosity decay in extended haplotypes and are availible for
download from the Haplotter website (http://hg-wen.uchicago.
edu/selection) [23]. Selection was quantified by an absolute value
of iHS.2 indicating strong selective pressures, and absolute iHS
values #2 and $1.635 were interpreted as indicating recent-
moderate selection, positive or negative iHS values indicated the
direction of selection [24]. All replicated SNPs were evaluated for
signatures of selection. One locus showed evidence of selection,
and this was the lymphocyte associated locus on chromosome
19p13, from 16,336,388–16,429,197 bp. This locus on chromo-
some 19p13 showed evidence of selection for all SNPs analyzed in
the replication phase. All SNPs in this locus appear to be under

some degree of negative selection with 2 of the 11 SNPs being
under strong negative selection and the rest under recent moderate
selection. However, when testing the correlation between effect
estimates and iHS at this locus using the ancestral allele as a
reference for effect direction, no clear correlation between iHS
and effect size was detected (r2 = 0.226, p-value = 0.140). Full iHS
annotation for replicated SNPs are shown in in Table S8.

As part of collaborative efforts with the COGENT and RIKEN
groups, a coordinated exchange of summary statistics for SNP
identified in Table 2 was organized from the parallel studies
conducted by these groups. Random-effects meta-analysis tech-
niques were utilized to identify effects that were consistent across
studies of diverese ethnic backgrounds. While all joint effect
estimates remained in consistent directions with those described in
Table 2, heterogeneity of effects across the 3 ancestral populatons
severely attenuated the strength of the associations for all but 2 of
the genome-wide significant associations identified in this report.
The associations at rs4794822 (WBC count) and rs11878602
(lymphocyte count) remained genome-wide significant. Consistent
robust effects across ancestral populations at rs11878602 may lend
some support to the recent-moderate negative selection at this
SNP (iHS = 21.924) being associated with an increase in
frequency of the derived A allele associated with decreasing
monocyte counts. These results suggest that these SNPs may be
very close to the functional variants associated with these effects, as
well as exhibiting relatively consistent effects across multiple
population ancestries with differing LD structures. The results of
these analyses are detailed in Table 3.

Discussion

This meta-analysis has identified ten genome-wide significant
trait-locus associations with WBC phenotypes spread across seven
genomic loci. Of these trait-locus associations, seven associations
represent novel findings, and three associations, across two
genomic loci, confirm previously identified associations. The
association of chromosome 17q21 near ORMDL3 and CSF3
associated in our study with total WBC count and neutrophil
count, and the 9q31 locus associated with monocyte count have
been previously demonstrated in European-ancestry and Japanese
populations [25,26]. The chromosome 3q21 locus near RPN1 and
C3orf27 has been previously shown to be associated with eosinophil
count, and is instead associated with related granulocyte cell
measures of monocyte and basophil counts in this study, although
we do identify suggestive p-values at ,1.00E-4 to 1.00E-8 and the
same direction of effect for the additional loci identified in
Gubjartsson et al., 2010 [19,27]. In addition, a number of previous
GWAS have implicated the monocyte count associated locus at
chromosome 8q24.21 as affecting height, renal function, serum
protein levels, multiple sclerosis, glioma, leukemia and a number
of other cancers [28–59]. Through conditional analyses and an
analysis of functional relatedness, we have shown correlation
among related traits and possible pleiotropic connectivity of these
loci across phenotypes that represent measures of biologically
related cellular lineages, as well as identified loci showing a direct
association between allelic gene expression differences and
variation in phenotypic measures.

The associations identified in this study are robust, and several
have been previously identified in GWAS studies of immunolog-
ically relevant phenotypes, such as the association of celiac disease

Figure 1. Results of discovery phase meta-analyses for white blood cell phenotypes. Red regions denote loci containing SNPs reaching
genome-wide significance at p-values,5.00E-08. Blue regions denote suggestive loci containing SNPs with p-values between 5.00E-08 and 1.00E-07.
doi:10.1371/journal.pgen.1002113.g001
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Table 2. Summary results from discovery and replication phase analyses for all genome-wide significant and successfully replicated loci.

Discovery Phase Replication Phase Joint Estimates

Phenotype SNP
Effect
Allele

Alter-
native
Allele Beta SE P-value Beta SE P-value Beta SE P-value

Effect
Hetero-
geneity
P-value CHR

Cyto-
band BP

Genes +/2100 kb
from most
significant
SNP in locus

Variance
explained
(adjusted r2)
per trait

WBC rs2517524 a c 0.017 0.003 2.64E-09 0.011 0.003 2.50E-05 0.013 0.002 1.46E-12 0.443 6 6p21.33 31133692 MUC21, HCG22, C6orf15,
CDSN, PSORS1C1,
PSORS1C2 and CCHCR1

0.070

rs4794822 t c 0.028 0.003 3.23E-23 0.018 0.002 1.31E-14 0.022 0.002 1.72E-34 0.053 17 17q21.1 35410238 GSDMB, ORMDL3, GSDMA,
PSMD3, CSF3, MED24,
SNORD124, THRA
and NR1D1

Neutrophils rs8078723 t c 20.043 0.004 2.84E-23 20.036 0.006 4.99E-10 20.041 0.004 3.16E-31 0.358 17 17q21.1 35420405 GSDMB, ORMDL3,
GSDMA, PSMD3, CSF3,
MED24, SNORD124,
THRA and NR1D1

0.067

Basophils rs4328821 a g 0.010 0.002 2.58E-08 0.010 0.002 8.40E-06 0.010 0.001 8.72E-13 0.218 3 3q21.3 129799125 LOC90246, C3orf27
and RPN1

0.021

Lymphocytes rs2524079 a g 0.014 0.003 1.85E-08 0.018 0.005 2.03E-04 0.015 0.002 2.93E-11 0.667 6 6p21.33 31348700 PSORS1C3, HCG27,
HLA-C and HLA-B

0.058

rs11878602 a c 20.016 0.003 3.42E-09 20.014 0.004 9.69E-04 20.015 0.002 8.43E-12 0.975 19 19p13.11 16416153 EPS15L1, CALR3,
C19orf44 and CHERP

Monocytes rs1449263 t c 0.036 0.005 6.71E-14 0.037 0.006 2.13E-10 0.036 0.004 5.21E-23 0.999 2 2q31.3 182027546 ITGA4, CERKL 0.088

rs9880192 c g 20.028 0.005 1.35E-08 20.027 0.006 2.08E-05 20.028 0.004 1.23E-12 0.888 3 3q21.3 129780259 GATA2, LOC90246,
C3orf27 and RPN1

rs1991866 c g 20.032 0.005 4.58E-11 20.037 0.006 7.51E-10 20.034 0.004 1.79E-19 0.747 8 8q24.21 130693287 NA

rs10980800 t c 20.044 0.006 1.13E-14 20.039 0.007 7.03E-09 20.042 0.004 4.26E-22 0.625 9 9q31.3 112955726 EDG2

SNPs included are the most significant SNP per genomic region of interest to aid in clarity.
doi:10.1371/journal.pgen.1002113.t002
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with the chromosome 2q31.1 locus containing ITGA4. ITGA4
encodes an alpha integrin subunit present on monocytes,
lymphocytes, endothelial cells and erythrocytes that serves as an
adhesion molecular receptor for VCAM-1, fibronectin. VCAM-1
is expressed at high levels on the vasculature of the bone marrow,
and therefore alpha4integrin receptors may play a role in homing
and recruitment of certain cell types during hematopoiesis [60,61].

The overlapping loci on chromosome 17q21 associated with
both total WBC and neutrophil counts constitute a single plausible
candidate locus contributing to general variability in total WBC
count and neutrophil count via hematopoietic mechanisms. These
measures are highly correlated, and the estimated SNP effects are
also likely correlated for this reason. From a functional perspective,
the role of G-CSF, the CSF3 gene product, has been well-
described in the biology of myeloid progenitor production and
differentiation. This locus previously reached genome-wide
significance in a joint analysis of discovery and replication cohorts
of total WBC count in individuals of European ancestry [18]. The
same locus, containing the genes PSMD3 and CSF3, was associated
with neutrophil count in a cohort of Japanese participants [27].
This study of Japanese subjects also reported a significant genome-
wide association with neutrophil count for three SNPs in a locus at
chromosome 20, containing the gene PLCB4. Due to the lower
minor allele frequency in European ancestry individuals of these
three correlated SNPs (minor allele frequency = 0.076 in HapMap
CEU samples versus 0.289 in HapMap JPT samples for
rs2072910) and the marginal effect size detected in the original
report, statistical power to detect this association was limited in our
analysis [27].

Our data suggest that the locus on chromosome 17q21 has
functional connectivity across white cell subtypes. Multiple genes
at this locus appeared in all significant pathways identified in the
GRAIL analyses showing a functional connectivity across both
granulocyte and non-granulocyte cell lineages. Gene clusters
detailed in the GRAIL analyses show significant functional clusters
including genomic regions that are separately associated with
granulocyte and non-granulocyte traits within the same cluster.
However, the results of the GRAIL analyses may be influenced by
both funding avenues and publication bias, as the classifications
are based only on PubMed searchable published results.

Figure 2. GRAIL gene clusters represented graphically for all
clusters reaching a FDR adjusted p-value ,0.05. The relative
thickness of each line connecting nodes is indicative of a p-value closer
to zero. Gene symbols are designated on each node, with the
cytogenetic position following the colon. Individual gene clusters are
color-coded.
doi:10.1371/journal.pgen.1002113.g002

Figure 3. The directionality and magnitude of effects for SNPs significant in both the meta-analysis and eQTL analysis are highly
correlated (r2 = 0.795). Effect estimates in both the eQTL analysis and meta-analysis were standardized to effects based on dosages of the minor
allele for each SNP. Meta-analysis effects are based on beta coefficients from regression, while eQTL effects are based on standardized betas. This
figure only includes significant SNPs to improve clarity.
doi:10.1371/journal.pgen.1002113.g003
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Table 3. Results of random-effects meta-analyses incorperating summary statistics from COGENT, RIKEN, and CHARGE meta-analyses for loci of interest.

European Ancestry - CHARGE
and HeamGen

African American Ancestry -
COGENT Network

Japanese Ancestry - Riken
Institute Random Effects Meta-analysis

Phenotype SNP Beta SE P-value Beta SE P-value Beta SE P-value
Summary
Effect

Summary
SE P-value

Heterogeneity
Variance

Heterogeneity
P-value

WBC rs2517524 0.013 0.002 1.46E-12 0.007 0.004 0.058 0.002 0.003 0.437 0.008 0.004 0.029 3.19E-05 0.008

rs4794822 0.022 0.002 1.72E-34 0.013 0.004 7.56E-04 0.019 0.003 1.25E-12 0.019 0.002 3.44E-15 9.74E-06 0.088

Neutrophils rs8078723 20.041 0.004 3.16E-31 20.007 0.007 0.331 20.034 0.005 5.60E-11 20.028 0.009 1.19E-03 1.99E-04 1.82E-04

Basophils rs4328821 0.010 0.001 8.72E-13 0.002 0.001 0.046 0.009 0.001 4.67E-25 0.007 0.003 6.37E-03 1.82E-05 3.11E-08

Lymphocytes rs2524079 0.015 0.002 2.93E-11 0.008 0.005 0.097 0.003 0.004 0.394 0.009 0.004 0.025 3.63E-05 0.015

rs11878602 20.015 0.002 8.43E-12 20.015 0.005 2.20E-03 20.008 0.003 0.016 20.013 0.002 1.84E-08 5.53E-06 0.224

Monocytes rs1449263 0.036 0.004 5.21E-23 0.009 0.003 5.01E-03 0.041 0.006 2.92E-12 0.028 0.011 9.13E-03 3.34E-04 3.69E-10

rs9880192 20.028 0.004 1.23E-12 0.004 0.005 0.431 20.038 0.011 6.74E-04 20.020 0.013 0.125 4.43E-04 2.01E-07

rs1991866 20.034 0.004 1.79E-19 20.005 0.003 0.138 20.025 0.006 2.92E-05 20.021 0.010 0.041 2.98E-04 4.73E-09

rs10980800 20.042 0.004 4.26E-22 20.005 0.004 0.185 0.014 0.013 0.263 20.012 0.016 0.428 6.75E-04 1.42E-11

doi:10.1371/journal.pgen.1002113.t003
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significant in our analyses, with multiple SNPs in the GATA2
region (GATA2+/2250 kb) approaching genome-wide signifi-
cance, exhibiting p-values in the discovery meta-analysis including
a regional minimum of 6.73E-07 (rs4328821 ). This is likely due to
our decreased sample size for analyses of eosinophil count
compared to the original report. However, our data show a
significant association between this genomic region and basophil
count, and basophils and eosinophils are both granulocytic cells
with common lineage in WBC differentiation. GATA2 is a well-
known transcription factor involved in maintenance of early
hematopoietic cell pools and proximal hematopoietic pathways. In
addition, this region proximal to GATA2 is also significantly
associated with monocyte counts, showing overlapping associa-
tions across both granulocyte and non-granulocyte cell lineages
and supporting the previously described functional role of GATA2
more proximally in the WBC differentiation process [77,78]. The
independence across granulocyte and non-granulocyte lineages is
evident as both associations showed independent signals of
association after adjustment for total WBC.

Our analyses have identified genomic loci associated with total
WBC and constituent white cell subtypes in European ancestry
cohorts. Our findings differ from the results of similar studies of
African American and Asian ancestry populations. Population
variation at previously identified total WBC count associated loci of
DARC in African American cohorts and PLCB4 in Asian ancestry
samples motivated our investigation of possible selection at the loci
identified in this report, as allele frequencies of SNPs in DARC and
PLCB4 differ across populations. This may be suggestive of recent
selection. Our analyses of iHS statistics for genome-wide significant
SNPs yielded only one locus under selection, with all SNPs
investigated in this region being under negative selection in
European ancestry populations. These SNPs on chromosome
19p13 associated with lymphocyte counts are proximal to candidate
genes such as CHREP, which function in calcium homeostasis in
lymphocytes, and mutations in the coding region of CALR3 are
associated with familial hypertrophic cardiomyopathy [79,80]. A
thorough search of literature did not reveal any known selective
factors associated with this locus. In addition, the fact that this locus
remained genome-wide significant in random-effects modeling
across diverse ancestral populations suggests a highly generalizable
effect at this locus that may or may not be related to selective factors.

In conclusion, we have identified and replicated a set of 10
independent trait-locus associations influencing multiple related
WBC traits, of which seven are novel associations. Integrative
analyses of our association data and gene expression analyses support
pleiotropic effects that will require further functional testing to clarify.

Materials and Methods

Ethics Statement
All participating studies conducted their research in accordance

with their respective institutional scientific and ethical review
boards. All human participants provided informed consent and all
clinical investigation was conducted in accordance with the
Declaration of Helsinki.

Study Methods
WBC counts were measured in 19,509 subjects in 7 discovery

cohorts (The Rotterdam Study (RS), Framingham Heart Study(FHS),
the NHLBI’s Atherosclerosis Risk in Communities (ARIC) Study, the
Age, Gene/Environment Susceptibility – Reykjavik Study (AGES)
Study, Health Aging and Body Composition Study (Health ABC), the
Baltimore Longitudinal Study of Aging (BLSA), and the Invecchiare
in Chianti Study (InChianti)) and 11,823 subjects in 10 replication

cohorts (the Sorbs, the Twins UK cohort (TwinsUK), Kooperative
Gesundheitsforschung in der Region Augsburg (KORAF3 &
KORAF4) and UK Blood Services Donor Panel 1 (UKBS1) studies,
three of the Italian Network on Genetic Isolates (INGI) studies
(Carlantino, Val Borbera and Friuli Venezia Giulia), the Rotterdam
Study II (RSII) and the Heart and Vascular Health Study (HVH)). In
order to study genetic factors affecting variation of these traits within
normal ranges, each study excluded all participants with any WBC
measure (total WBC or one of the 5 cell subtypes) outside of +/22
standard deviations from the mean value for that trait.

WBC phenotypes were derived from data provided by fluores-
cence activated cell sorting technologies commonly employed in
clinical and epidemiological studies to interrogate common
hematological elements found in peripheral blood. Total WBC
count was reported in thousands of cells per ml, and sub-type specific
cell counts were calculated by multiplying the proportion of the
WBC count comprised by each cell type by the total WBC measure.
Any subject with a trait value greater than 2 SD from the
corresponding mean of that trait in each cohort or missing data
for any assayed phenotype were excluded from all analyses. Shapiro-
Wilk tests of normality were implemented in the smallest discovery
cohorts as the data was available at the time of study design (the
InChianti study and the Baltimore Longitudinal Study of Aging,
BLSA) to evaluate normality of the phenotypes for analyses. Raw
values, natural log transformed and square-root transformed values
for each phenotype of interest in these two studies were compared
with regard to deviations from normality based assessment of the
Shapiro-Wilk test statistic in the two studies. Based upon these
reviews, a uniform analysis plan was established for conducting each
study-level analyses, analysis, using either log transformation (total
WBC count, neutrophil count, and monocyte count) or square-root
transformation (basophil count, eosinophil count and lymphocyte
count) in order to normalize the distributions of the phenotypic data.

At the study level, GWAS analyses were conducted on unrelated
participants (except for FHS) of confirmed European ancestry
based on either multi-dimensional scaling or principal components
analyses, concordance between genotypic and self-reported
gender, and successfully genotyped at .95% of attempted SNPs.
SNPs were filtered based on criteria of minor allele frequency
.0.01 (MAF), missingness per SNP,5% and Hardy-Weinberg
equilibrium p-value.1.00E-7 (HWE, used to exclude poorly
clustered genotypes). Participants and SNPs passing basic quality
control were imputed to .2.4 million SNPs based on HapMapII
haplotype data. All studies utilized multivariate linear regression to
generate study level summary statistics for each phenotype, with
allelic dosages at each SNP used as the independent variable and
primary covariates of age at hematology assay, current smoking
status and sex. Detailed descriptions of participating studies, their
quality control practices and study-level analyses which may differ
slightly from those described above are provided in Text S1.

To conduct meta-analyses, all studies submitted summary
statistics from the study-level linear regression analyses for each
phenotype. Meta-analyses were conducted using inverse-variance
weighted fixed-effects models to combine beta coefficients and
standard errors from study level regression results for each SNP to
derive a combined p-value. Prior to discovery meta-analyses, SNPs
were excluded if imputation quality metrics (equivalent to the
squared correlation between proximal imputed and genotyped
SNPs) were less than 0.30. Study level results were also corrected
for genomic inflation factors (lGC) by incorporating study specific
lGC estimates into the scaling of the standard errors (SE) of the
regression coefficients by multiplying the SE by the square-root of
the genomic inflation factor (see Table S1 for study and phenotype
specific genomic inflation factors) [81]. Study specific genomic
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inflation factor estimates for all discovery cohorts were all ,1.05
except for 1.12 in the Health ABC analysis of basophil count and
1.09 in the analysis of total white blood cell count in AGES (Table
S1). No definitive cause of this inflation could be identified, and of
particular interest, the genomic inflation factors for related traits in
these two studies were within the normally accepted range. Meta-
analyses were implemented using METAL and independently re-
analyzed using R to confirm results [82].

We chose a priori to carry over all results from discovery meta-
analyses at p-values,5.00E-08 to replication meta-analyses,
excluding any SNPs with Cochran’s Q test of heterogeneity p-
values,0.01 or missing in more than 2 studies. These conservative
exclusion criteria caused the exclusion of 6 of 167 genome-wide
significant SNPs from replication analyses, and these SNPs did not
constitute any new loci of interest. The final number of SNPs for
replication analyses was then reduced to 161 candidate SNPs
across all phenotypes. For replication meta-analyses of individual
SNPs, each phenotype was analyzed separately using similar
inverse-variance weighted meta-analyses as in the discovery stage
analyses, although no genomic control was used. P-values for
significant associations in the replication stage were corrected for
the number of SNPs tested per phenotype using the standard
Bonferroni correction for multiple testing (total WBC count
corrected for 63 SNPs, with a significance threshold of p-
value#7.94E-4; neutrophil count corrected for 46 SNPs, with a
significance threshold of p-value#1.09E-3; basophil count cor-
rected for 1 SNP, with a significance threshold of p-value#0.05;
lymphocyte count corrected for 14 SNPs, with a significance
threshold of p-value#3.57E-3; and monocyte count corrected for
37 SNPs, with a significance threshold of p-value#1.35E-3). Of
the 161 candidate SNPs included in the replication phase, 152
SNPs passed the trait-specific replication p-value thresholds. Ony
one genome-wide significant locus failed to replicate, and this locus
on chromosome 1q22 contained only one genome-wide significant
SNP associated with monocyte count in the discovery phase.

Of the 152 successfully replicated associations, 109 SNPs were
unique, since some SNPs were significant across multiple phenotypes.
These replicated SNPs were analyzed in GRAIL to infer a possible
biological connection between significant meta-analysis loci. GRAIL
was used to mine textual data based on PubMed keywords to
examine functional relatedness across phenotypes based on inferred
biological interconectivity between genes proximal to meta-analysis
results. SNP (rs) identifiers for these associated SNPs were input into
the GRAIL webserver as a means of specifying genomic regions of
interest in constructing query and seed regions to be analyzed. Genes
for text mining of the functional datasource were identified using the
LD structure of HapMap2 Release 22 CEU samples, gathering gene
identifiers to search indexed abstracts from PubMed last curated on
May 2010. Genes in regions of interest were clustered based on
keyword similarity. These genes and clusters were then scored based
on ranked similarity, adjusting for gene size, to generate p-values
evaluating the strength of the functional interconnectivity of genes in
the regions of interest. P-values for these functional clusters were then
false-discovery rate adjusted (FDR) to correct for multiple testing,
with the FDR adjusted p-value of 0.05 considered the threshold for
significance.

For the eQTL analysis, 501 participants with complete genotyping
data from the InChianti study were also successfully assayed on
Illumina HT12v.3 genome-wide expression arrays using RNA
isolated from whole blood. Quality control of the genome-wide
expression data included the exclusion of probes with detection p-
values.0.01 with missing data for greater than 5% of participants.
Samples must have been assayed with at least 95% of the filtered
probe sets passing quality control in order to be included in analyses.

5094 probes passed quality control and were subsequently cubic-
spline normalized prior to analysis. In the investigation of possible
cis-eQTL associations at regions of interest identified in the meta-
analysis, all probes within 500 kb of successfully replicated SNPs
from the meta-analysis were identified based on annotations from
ReMOAT (http://www.compbio.group.cam.ac.uk/Resources/
Annotation/) [83]. Thus, we tested 741 possible cis-eQTLs.
Multivariate linear regression was implemented using PLINKv.1.07
[84], testing the dosage of minor alleles as a predictor of gene
expression level for each probe. These linear regression models were
adjusted for hybridization batch, amplification batches, sex,
smoking, study site and age at baseline of study. The p-values
generated by each analysis was corrected for the number of tests,
with a minimum threshold of significance at p-value#6.75E-05.

Supporting Information

Figure S1 Detailed association plot for the WBC locus at
Chr6:31033692–31233692 bp. Locus specific plots showing top
SNP per replicated locus +/2100 kilobases. SNPs in each region
are color-coded based on linkage disequilibrium (r2) estimates from
the CEU subset from HapMap Phase II: purple indicates
reference SNP from meta-analysis, red indicates r2.0.8, orange
indicates 0.6,r2#0.8, green indicates 0.4,r2#0.6, light blue
indicates 0.2,r2#0.4, and dark blue indicates r2#0.2. Recombi-
nation rates estimated from the CEU HapMap Phase II data are
included as a blue line in the background of the figure. Gene
boundaries and exon positions are taken from RefSeq and UCSC
Genome browser (build 36). Locus plots were generated using the
LocusZoom Stand-alone package (http://genome.sph.umich.edu/
wiki/LocusZoom_Standalone), incorporating the R packages Grid
and Lattice, as well as the package New Fugue (http://genome.
sph.umich.edu/wiki/New_Fugue) to estimate LD structure.
(PDF)

Figure S2 Detailed association plot for the WBC locus at
Chr17:35310238–35510238 bp. Locus specific plots showing top
SNP per replicated locus +/2100 kilobases. SNPs in each region
are color-coded based on linkage disequilibrium (r2) estimates from
the CEU subset from HapMap Phase II: purple indicates
reference SNP from meta-analysis, red indicates r2.0.8, orange
indicates 0.6,r2#0.8, green indicates 0.4,r2#0.6, light blue
indicates 0.2,r2#0.4, and dark blue indicates r2#0.2. Recombi-
nation rates estimated from the CEU HapMap Phase II data are
included as a blue line in the background of the figure. Gene
boundaries and exon positions are taken from RefSeq and UCSC
Genome browser (build 36). Locus plots were generated using the
LocusZoom Stand-alone package (http://genome.sph.umich.edu/
wiki/LocusZoom_Standalone), incorporating the R packages Grid
and Lattice, as well as the package New Fugue (http://genome.
sph.umich.edu/wiki/New_Fugue) to estimate LD structure.
(PDF)

Figure S3 Detailed association plot for the Neutrophil locus at
Chr17:35306999–35506999 bp. Locus specific plots showing top
SNP per replicated locus +/2100 kilobases. SNPs in each region
are color-coded based on linkage disequilibrium (r2) estimates from
the CEU subset from HapMap Phase II: purple indicates
reference SNP from meta-analysis, red indicates r2.0.8, orange
indicates 0.6,r2#0.8, green indicates 0.4,r2#0.6, light blue
indicates 0.2,r2#0.4, and dark blue indicates r2#0.2. Recombi-
nation rates estimated from the CEU HapMap Phase II data are
included as a blue line in the background of the figure. Gene
boundaries and exon positions are taken from RefSeq and UCSC
Genome browser (build 36). Locus plots were generated using the
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LocusZoom Stand-alone package (http://genome.sph.umich.edu/
wiki/LocusZoom_Standalone), incorporating the R packages Grid
and Lattice, as well as the package New Fugue (http://genome.
sph.umich.edu/wiki/New_Fugue) to estimate LD structure.
(PDF)

Figure S4 Detailed association plot for the Basophil locus at
Chr3:129699125–129899125 bp. Locus specific plots showing top
SNP per replicated locus +/2100 kilobases. SNPs in each region
are color-coded based on linkage disequilibrium (r2) estimates from
the CEU subset from HapMap Phase II: purple indicates
reference SNP from meta-analysis, red indicates r2.0.8, orange
indicates 0.6,r2#0.8, green indicates 0.4,r2#0.6, light blue
indicates 0.2,r2#0.4, and dark blue indicates r2#0.2. Recombi-
nation rates estimated from the CEU HapMap Phase II data are
included as a blue line in the background of the figure. Gene
boundaries and exon positions are taken from RefSeq and UCSC
Genome browser (build 36). Locus plots were generated using the
LocusZoom Stand-alone package (http://genome.sph.umich.edu/
wiki/LocusZoom_Standalone), incorporating the R packages Grid
and Lattice, as well as the package New Fugue (http://genome.
sph.umich.edu/wiki/New_Fugue) to estimate LD structure.
(PDF)

Figure S5 Detailed association plot for the Lymphocyte locus at
Chr6:31250153–31450153 bp. Locus specific plots showing top
SNP per replicated locus +/2100 kilobases. SNPs in each region
are color-coded based on linkage disequilibrium (r2) estimates from
the CEU subset from HapMap Phase II: purple indicates
reference SNP from meta-analysis, red indicates r2.0.8, orange
indicates 0.6,r2#0.8, green indicates 0.4,r2#0.6, light blue
indicates 0.2,r2#0.4, and dark blue indicates r2#0.2. Recombi-
nation rates estimated from the CEU HapMap Phase II data are
included as a blue line in the background of the figure. Gene
boundaries and exon positions are taken from RefSeq and UCSC
Genome browser (build 36). Locus plots were generated using the
LocusZoom Stand-alone package (http://genome.sph.umich.edu/
wiki/LocusZoom_Standalone), incorporating the R packages Grid
and Lattice, as well as the package New Fugue (http://genome.
sph.umich.edu/wiki/New_Fugue) to estimate LD structure.
(PDF)

Figure S6 Detailed association plot for the Lymphocyte locus at
Chr19:16309375–16509375 bp. Locus specific plots showing top
SNP per replicated locus +/2100 kilobases. SNPs in each region
are color-coded based on linkage disequilibrium (r2) estimates from
the CEU subset from HapMap Phase II: purple indicates
reference SNP from meta-analysis, red indicates r2.0.8, orange
indicates 0.6,r2#0.8, green indicates 0.4,r2#0.6, light blue
indicates 0.2,r2#0.4, and dark blue indicates r2#0.2. Recombi-
nation rates estimated from the CEU HapMap Phase II data are
included as a blue line in the background of the figure. Gene
boundaries and exon positions are taken from RefSeq and UCSC
Genome browser (build 36). Locus plots were generated using the
LocusZoom Stand-alone package (http://genome.sph.umich.edu/
wiki/LocusZoom_Standalone), incorporating the R packages Grid
and Lattice, as well as the package New Fugue (http://genome.
sph.umich.edu/wiki/New_Fugue) to estimate LD structure.
(PDF)

Figure S7 Detailed association plot for the Monocyte locus at
Chr2:181927546–182127546 bp. Locus specific plots showing top
SNP per replicated locus +/2100 kilobases. SNPs in each region
are color-coded based on linkage disequilibrium (r2) estimates from
the CEU subset from HapMap Phase II: purple indicates
reference SNP from meta-analysis, red indicates r2.0.8, orange

indicates 0.6,r2#0.8, green indicates 0.4,r2#0.6, light blue
indicates 0.2,r2#0.4, and dark blue indicates r2#0.2. Recombi-
nation rates estimated from the CEU HapMap Phase II data are
included as a blue line in the background of the figure. Gene
boundaries and exon positions are taken from RefSeq and UCSC
Genome browser (build 36). Locus plots were generated using the
LocusZoom Stand-alone package (http://genome.sph.umich.edu/
wiki/LocusZoom_Standalone), incorporating the R packages Grid
and Lattice, as well as the package New Fugue (http://genome.
sph.umich.edu/wiki/New_Fugue) to estimate LD structure.
(PDF)

Figure S8 Detailed association plot for the Monocyte locus at
Chr3:129680259–129880259 bp. Locus specific plots showing top
SNP per replicated locus +/2100 kilobases. SNPs in each region
are color-coded based on linkage disequilibrium (r2) estimates from
the CEU subset from HapMap Phase II: purple indicates
reference SNP from meta-analysis, red indicates r2.0.8, orange
indicates 0.6,r2#0.8, green indicates 0.4,r2#0.6, light blue
indicates 0.2,r2#0.4, and dark blue indicates r2#0.2. Recombi-
nation rates estimated from the CEU HapMap Phase II data are
included as a blue line in the background of the figure. Gene
boundaries and exon positions are taken from RefSeq and UCSC
Genome browser (build 36). Locus plots were generated using the
LocusZoom Stand-alone package (http://genome.sph.umich.edu/
wiki/LocusZoom_Standalone), incorporating the R packages Grid
and Lattice, as well as the package New Fugue (http://genome.
sph.umich.edu/wiki/New_Fugue) to estimate LD structure.
(PDF)

Figure S9 Detailed association plot for the Monocyte locus at
Chr8:130578550–130778550 bp. Locus specific plots showing top
SNP per replicated locus +/2100 kilobases. SNPs in each region
are color-coded based on linkage disequilibrium (r2) estimates from
the CEU subset from HapMap Phase II: purple indicates
reference SNP from meta-analysis, red indicates r2.0.8, orange
indicates 0.6,r2#0.8, green indicates 0.4,r2#0.6, light blue
indicates 0.2,r2#0.4, and dark blue indicates r2#0.2. Recombi-
nation rates estimated from the CEU HapMap Phase II data are
included as a blue line in the background of the figure. Gene
boundaries and exon positions are taken from RefSeq and UCSC
Genome browser (build 36). Locus plots were generated using the
LocusZoom Stand-alone package (http://genome.sph.umich.edu/
wiki/LocusZoom_Standalone), incorporating the R packages Grid
and Lattice, as well as the package New Fugue (http://genome.
sph.umich.edu/wiki/New_Fugue) to estimate LD structure.
(PDF)

Figure S10 Detailed association plot for the Monocyte locus at
Chr9:112855726–113055726 bp. Locus specific plots showing top
SNP per replicated locus +/2100 kilobases. SNPs in each region
are color-coded based on linkage disequilibrium (r2) estimates from
the CEU subset from HapMap Phase II: purple indicates
reference SNP from meta-analysis, red indicates r2.0.8, orange
indicates 0.6,r2#0.8, green indicates 0.4,r2#0.6, light blue
indicates 0.2,r2#0.4, and dark blue indicates r2#0.2. Recombi-
nation rates estimated from the CEU HapMap Phase II data are
included as a blue line in the background of the figure. Gene
boundaries and exon positions are taken from RefSeq and UCSC
Genome browser (build 36). Locus plots were generated using the
LocusZoom Stand-alone package (http://genome.sph.umich.edu/
wiki/LocusZoom_Standalone), incorporating the R packages Grid
and Lattice, as well as the package New Fugue (http://genome.
sph.umich.edu/wiki/New_Fugue) to estimate LD structure.
(PDF)
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Table S1 Genomic inflation factors lGC for discovery stage
analyses. The lGC values were calculated inclusive of all SNPs
analyzed, and these values were utilized as genomic control factors
for the meta-analyses.
(PDF)

Table S2 Full discovery findings and replication results for SNPs
of interest from the discovery stage of analyses.
(XLS)

Table S3 Results of fixed-effects meta-analyses incorperating a
study-level adjustment for the most significant SNP per locus
identified.
(TXT)

Table S4 Results of fixed-effects meta-analyses incorperating a
study-level adjustment for the total WBC measure.
(TXT)

Table S5 Adjusted r2 estimates across phenotypes.
(XLSX)

Table S6 Gene based clustering from GRAIL. This includes all
clusters evaluated.
(PDF)

Table S7 eQTL analysis results for all associations tested
between SNPs and transcripts in a subset of 501 samples from
the InCianti study.
(TXT)

Table S8 iHS scores per SNP of interest.
(PDF)

Text S1 Study descriptions and additional information.
(DOC)
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