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Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans.
To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n 4 32,000) and
followed up top signals in 14 additional cohorts (n 4 59,000). We strongly confirm FTO and MC4R and identify six additional
loci (P o 5 � 10�8): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a
candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system
(CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
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Obesity is a major public health problem, resulting in increased
morbidity and mortality and severe economic burdens on health-
care systems1,2. Excessive energy intake and diminished physical
activity contribute to the increasing prevalence of obesity, but genetic
factors strongly modulate the impact of the modern environment on
each individual. Indeed, family and twin studies have shown that
genetic factors account for 40–70% of the population variation in
BMI3,4. BMI is the most commonly used quantitative measure of
adiposity, and adults with high values of BMI (430 kg/m2) are
termed obese.

Until recently, genetic variants known to influence BMI were largely
restricted to mutations in several genes that cause rare, often severe
monogenic syndromes with obesity as the main feature5. Mutations in
these genes are thought to act through the CNS, and in particular the
hypothalamus, to influence energy balance and appetite, thereby
leading to obesity. However, it is not known whether genetic variation
in similar pathways is also relevant to the common form of obesity
and population variation in BMI.

In the past year, large-scale searches for genetic determinants of
BMI revealed previously unreported associations with common var-
iants at two loci, FTO and MC4R6–10. Common variants at these loci
are associated with modest effects on BMI (0.2–0.4 kg/m2 per allele)
that translate into odds ratios of 1.1–1.3 for obesity (defined as BMI
Z 30 kg/m2)6–10. Common variation in PCSK1 has been strongly
associated with the risk of extreme obesity11, but this association has
not yet been independently replicated.

Together, common variants at FTO and MC4R and rare variants
known to cause obesity explain only a small fraction of the inherited
contribution to population variation in BMI. To expedite the identi-
fication of alleles associated with variation in BMI, obesity and other
anthropometric traits, we formed the GIANT (Genetic Investigation
of ANthropometric Traits) consortium to facilitate large-scale
meta-analysis of data from multiple genome-wide association studies
(GWAS). Here, we report a meta-analysis of 15 GWAS totaling 32,387
individuals and test for association between BMI and B2.4 million
genotyped or imputed SNPs. We then follow up 35 SNPs drawn from
the most significantly associated loci by a combination of de novo
genotyping in up to 45,018 additional individuals and analysis of these
SNPs in another 14,064 individuals already genotyped as part of other
GWAS. These studies show that variants at six previously unreported
loci in or near TMEM18, KCTD15, SH2B1, MTCH2, GNPDA2 and
NEGR1 are reproducibly associated with BMI.

RESULTS
Initial meta-analysis of GWAS studies of BMI (stage 1)
We carried out a GWA meta-analysis of a total of 32,387 individuals of
European ancestry from 15 cohorts of 1,094 to 5,433 individuals using
two parallel analytic strategies (Supplementary Fig. 1 and Supplemen-
tary Tables 1–3 online). First, we carried out a weighted z-score–based
meta-analysis combining P values from cohort-specific analysis strate-
gies. Second, we also performed an inverse-variance meta-analysis using
regression coefficients and their standard errors obtained by applying a
uniform analysis strategy across all studies. The results for these two
strategies were highly congruent (Supplementary Fig. 2 online). Here
we report results of the weighted P value analysis, as it was completed
first and used to select SNPs for follow-up genotyping.

SNPs that reached P o 5 � 10�8 (a threshold that corresponds
to P o 0.05 after adjusting for B1 million independent tests) in this
stage 1 analysis all mapped within the FTO gene (association peak at
rs1421085, P ¼ 2.6 � 10�19), were in linkage disequilibrium (LD)
with each other (r2 4 0.51), and strongly confirm previous reports of
association at this locus6–8. A locus located near MC4R (rs17782313,
P ¼ 3.9 � 10�7) and recently associated with BMI9,10 was the fourth
most significant region in the stage 1 data (Fig. 1). Even after
excluding SNPs in these two established BMI loci, we observed an
excess of SNPs with small P values compared to chance expectations,
suggesting that some of the remaining loci with strong but not
definitive evidence of association in stage 1 are truly associated with
BMI (Fig. 1b).

Additional analysis of the strongest associations (stage 2)
To validate potential associations with BMI, we designed a pool of 35
variants for further genotyping, drawn from among the most strongly
associated independent loci (for technical reasons, these SNPs do not
correspond perfectly to the top 35 loci; see Methods). We genotyped
these SNPs in up to 45,018 additional individuals of European ancestry
from nine stage 2 samples (Supplementary Fig. 1, Supplementary
Tables 1 and 4 and Supplementary Note online). We also obtained
in silico association results for these SNPs from five BMI GWAS on
14,064 additional individuals of European ancestry (Supplementary
Fig. 1, Supplementary Tables 1 and 4 and Supplementary Note).
Meta-analysis of these stage 2 results combined with stage 1 data
revealed SNPs from five previously unreported loci near TMEM18,
KCTD15, SH2B1, MTCH2 and GNPDA2 that are strongly associated
with BMI (P o 5 � 10�8; Table 1, Fig. 2 and Supplementary Table 5
online). Two additional loci, represented by rs2815752 (near NEGR1)
and rs10769908 (near STK33) had supporting evidence in stage 2
samples but did not reach the P o 5 � 10�8 threshold (P ¼ 6.0 �
10�8 and P ¼ 1.3 � 10�6, respectively). Among these two, rs2815752
also showed a highly significant independent association with severe
obesity in a pediatric cohort (P ¼ 2.2 � 10�7; Supplementary Table 6
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Figure 1 Genome-wide association results for GIANT (stage 1).

(a) Manhattan plot showing the significance of association of all SNPs in

the stage 1 GIANT meta-analysis with BMI. SNPs are plotted on the x axis

according to their position on each chromosome; association with BMI is

indicated on the y axis (as –log10 P value). SNPs previously reported to show

association with BMI are shown in blue, signals examined but not confirmed

in stage 2 samples are shown in red and the six new regions described here

are highlighted in green. (b) Quantile-quantile plot of SNPs after stage 1

GIANT meta-analysis (black) and after removal of any SNPs within 500 kb

of FTO- or MC4R-associated SNPs (blue). (c) Quantile-quantile plot of SNPs

in the stage 1 GIANT meta-analysis for association with BMI (black) and

after removal any SNPs surrounding FTO, MC4R and the six new loci

reported here (green).
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online), strongly suggesting that this variant represents a sixth newly
discovered locus influencing BMI. For each of the six loci, multiple
SNPs showed highly significant association in the stage 1 data (Fig. 2),
and the associations were observed across multiple cohorts genotyped
on different platforms (Supplementary Table 7 online), suggesting
that idiosyncratic genotyping artifacts are unlikely to explain our
results. Furthermore, the consistent association signals across different
European-ancestry samples, each with low genomic control inflation
factors (Supplementary Table 3), also suggest that population struc-
ture is unlikely to account for these associations. Finally, five of the
six associated variants (near TMEM18, KCTD15, SH2B1, MTCH2
and NEGR1, but not GNPDA2) had Illumina proxies in high LD
(r2 4 0.66) with our best SNPs that were included in an independent
GWAS by Thorleifsson et al.12; for all five, they observed confirmatory
evidence of association with BMI (Table 1), providing strong valida-
tion of these newly discovered associations.

Of the variants showing strong association with BMI, only rs9939609
(in FTO) showed nominally significant evidence of heterogeneity across
cohorts (P ¼ 0.02, Supplementary Table 5), and none of the associa-
tions showed significantly different effects by sex (P 4 0.16, Supple-
mentary Table 5). We did not observe any significant evidence
supporting the recently reported BMI associations with SNPs
near INSIG2 (rs7566605, P ¼ 0.98) and CTNNBL1 (rs6013029,
P¼ 0.34)13,14. We did observe modest evidence for association between
BMI and variation in PCSK1 (rs6232, P ¼ 0.03 in the appropriate
direction), which has previously been associated with severe obesity11.

Impact on BMI, obesity, related traits and complications
The effects of the associated variants on BMI were estimated using
data solely from genotyped stage 2 samples, to lessen the impact of the
‘winner’s curse’; they ranged from 0.06 kg/m2 to 0.33 kg/m2 per allele,

corresponding to a change of 173–954 g in weight per allele in adults
who are 160–180 cm tall (Table 1). In our stage 2 samples, the six
newly discovered loci together account for 0.40% of the variance of
BMI, and in conjunction with the known associations at FTO and
MC4R account for 0.84% of the variance (Table 1). We also estimated
the allelic odds ratios for these six newly discovered variants on the
risk of being overweight (BMI Z 25 kg/m2) or obese (BMI Z 30 kg/
m2) compared to non-overweight controls (BMI o 25 kg/m2).
According to data from the newly genotyped stage 2 samples, the
allelic odds ratios for being overweight for each of the six variants
ranged from 1.03 to 1.14, and for being obese from 1.03 to 1.25
(Supplementary Table 8 online).

To estimate the combined impact of these variants on BMI, we
examined our largest population-based stage 2 sample (the EPIC–
Norfolk cohort), analyzing the 14,409 individuals who had no missing
genotypes for associated SNPs at any of the eight validated loci
(TMEM18, KCTD15, SH2B1, MTCH2, NEGR1 and GNPDA2, plus
FTO and MC4R). We calculated a genotype score for each individual,
weighting the number of BMI-increasing alleles by their relative effect
sizes (so that FTO alleles had the largest weight and MTCH2 alleles the
smallest). In this cohort, the 1.2% (n ¼ 178) of the sample with 13 or
more ‘standardized’ BMI-increasing alleles across these eight loci is on
average 1.46 kg/m2 (equivalent to 3.7–4.7 kg for an adult 160–180 cm
in height) heavier than the 1.4% (n ¼ 205) of the sample with r3
standardized BMI-increasing alleles, and 0.59 kg/m2 (1.5–1.9 kg for an
adult 160–180 cm in height) heavier than the average individual in our
study (Fig. 3).

Further follow-up of the confirmed SNPs in a large geographically
based cohort of children (ALSPAC Study, n ¼ 4,951 children with
BMI information at age 11) showed significant and directionally
consistent associations between BMI and the variants near TMEM18

Table 1 SNPs with genome-wide significant evidence for association with BMI

Alleles Stage 1 Stage 2 Stage 1 + 2 With deCODE

SNP

Nearby

gene Chr.

Position

(bp) Effect Other

Frequency

of effect

allele (%)

Per-allele change

in BMI (kg/m2)

beta (95% CI)

Explained

variance

(%) n P n P n P n P

rs9939609a FTO 16 52378028 A T 41 0.33 0.34 32,329 6.3E–17 51,055 3.3E–36 83,384 4.3E–51 113,204 4.9E–74

(0.27, 0.39)

rs6548238 TMEM18 2 624905 C T 84 0.26 0.13 32,256 1.2E–06 52,567 1.6E–13 84,823 1.4E–18 114,643 3.2E–26

(0.19, 0.34)

rs17782313 MC4R 18 56002077 C T 21 0.20 0.10 32,385 3.9E–07 48,362 1.9E–12 80,747 4.6E–18 110,567 1.1E–20

(0.12, 0.28)

rs10938397 GNPDA2 4 45023455 G A 45 0.19 0.13 32,387 1.0E–05 49,371 4.5E–12 81,758 3.4E–16 n.d. n.d.

(0.13, 0.25)

rs7498665a SH2B1 16 28790742 G A 41 0.15 0.08 32,361 5.4E–06 54,316 1.7E–06 86,677 5.1E–11 116,497 2.2E–14

(0.08, 0.21)

rs10838738 MTCH2 11 47619625 G A 34 0.07 0.02 32,387 7.1E–06 48,530 9.6E–05 80,917 4.6E–09 110,737 1.9E–11

(0.01, 0.13)

rs11084753 KCTD15 19 39013977 G A 67 0.06 0.01 32,335 2.6E–07 39,371 4.1E–03 71,706 2.3E–08 101,526 4.5E–12

(–0.01, 0.13)

rs2815752a NEGR1 1 72524461 A G 62 0.10 0.03 32,387 9.3E–06 51,112 6.8E–04 83,499 6.0E–08 113,319 1.0E–12

(0.04, 0.16)

Nearby gene is the gene closest to the SNP in column 1. Chromosome and position (in Build 35) of SNPs used in analyses are listed. ‘Effect’ allele, BMI-increasing allele; ‘Other’
allele, BMI-decreasing allele. Frequency of effect allele, weighted frequency of the effect allele (and the proxy SNP for those loci where more than one SNP was typed) in genotyped
population-based cohorts (EPIC, FINRISK97, BPPP, METSIM). Per-allele change in BMI, the change in BMI per increase in the effect allele (with 95% confidence interval) from
stage 2 genotyped population-based cohorts. Explained variance, the average of the variance explained for the SNP used for analysis in stage 2 genotyped population-based cohorts.
Stage 1, data from stage 1 GIANT meta-analysis; stage 2; data from meta-analysis of genotyped and in silico studies; stage 1 + 2, data from stage 1 GIANT analyzed with genotyped
and in silico studies from stage 2. With deCODE, data from meta-analysis of stages 1 and 2 and data from ref. 12. n.d., not determined because of unavailability of good Illumina
proxy for rs10938397.
aSNPs rs1121980 (FTO r2 ¼ 0.96 to rs9939609), rs9931989 (SH2B1 r2 ¼ 0.68 to rs7498665) and rs2568958 (NEGR1 r2 ¼ 1 to rs2815752) were used in some stage 2 samples.
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(P ¼ 3.4 � 10�5), KCTD15 (P ¼ 0.0010) and GNPDA2 (P ¼ 0.018)
(Supplementary Table 6). Comparison of extreme childhood obesity
cases (n ¼ 1,038, SCOOP-UK) to all children in the ALSPAC cohort
(n ¼ 8,369 in the full cohort) revealed an increased risk of extreme
childhood obesity for the BMI-increasing alleles near TMEM18
(OR ¼ 1.41, P ¼ 7.9 � 10�7), GNPDA2 (OR ¼ 1.20, P ¼ 1.5 �
10�4) and NEGR1 (OR ¼ 1.29, P ¼ 2.2 � 10�7). The absence of
significant associations with childhood BMI or extreme childhood
obesity for the variants near MTCH2 and SH2B1 could reflect the
relatively smaller sample sizes and lower statistical power of our
childhood cohorts, or perhaps a differential effect of these variants
on the risk of childhood and adult-onset obesity.

Although BMI is a well accepted and commonly used measure of
obesity, it is an indirect and approximate measure of adiposity. BMI
has two components, weight and height, and can also be influenced by
lean and/or fat mass. To determine which aspect(s) of BMI are
influenced by the variants we identified, we analyzed their association
with the different anthropometric components of BMI, and also with
a more direct measure of adiposity, percentage fat mass. All of the
variants had much stronger associations with weight than with height
(Supplementary Tables 6 and 8), with the exception that for KCTD15

and MTCH2 the small effects on BMI in stage 2 samples limited our
ability to dissect the effect on BMI into its constituent components.
Variation at MC4R was significantly associated with adult height, as
previously reported9. To measure more directly the effects on adipos-
ity, we tested these variants for association with percentage fat mass
in a meta-analysis of three cohorts of adults in which percent fat mass
was assessed (EPIC-Norfolk, Botnia PPP and METSIM; total
n ¼ 18,279), and also in the children from ALSPAC in whom percent
body fat mass was measured at age 11 (n ¼ 4,876). As was seen
previously for FTO and MC4R7,9, the BMI-increasing alleles at all new
loci were also associated with or trended with increased fat mass in
both the combined samples of adults and the childhood cohort
(Supplementary Tables 6 and 8; each variant had a P value o0.1
in the appropriate direction in either adults, children or both). Thus,
the associations with BMI are largely driven by effects on weight rather
than height, and seem to act at least in part through an effect
on adiposity.

We used publicly available results of GWAS for known obesity
complications, including type 2 diabetes15, lipid levels16 and coronary
artery disease (CAD)17,18, to assess the impact of the newly discovered
obesity loci on these traits. Two of the loci were associated with

lllu550k
lllu317k

Affy500k
Imputed

lllu550k
lllu317k

Affy500k
Imputed

rs6548238
Pcombined = 1 × 10–18

Pcombined = 3 × 10–16

Pcombined = 5 × 10–11

r 2 = 0.8–1
r 2 = 0.5–0.8
r 2 = 0.3–0.5

57.3 kb

542.4 kb

24.6 kb 374.8 kb

10.8 kb

509.2 kb

r 2 < 0.3

rs10938397
r 2 = 0.8–1
r 2 = 0.5–0.8
r 2 = 0.3–0.5
r 2 < 0.3

7 100

80

60

cM
/M

b40

20

0

100

80

60

cM
/M

b40

20

0

80

60

cM
/M

b40

20

0

6
5

–l
og

10
 P

 v
al

ue
 B

M
I

4
3

FAM150B

TMEM18

SNTG2 GNPDA2

XP06 CCDC101

SULT1A2

SULT1A1 ATP2A1

SH2B1

TUFM LAT

SBK1

LOC440350

CLN3

APOB48R

IL27 EIF3CL

NUPR1 ATXN2L SPNS1

NFATC2lP

EIF3C CD19

LOC390688 RABEP2

YlPF7

GUF1LOC391343

SH3YL1

CKAP5

LRP4

NR1H3 CUGBP1

MADD

C11orf49 MYBPC3 KBTBD4 PTPRJ

OR4C3

OR4C45

CHST8

KCTD15

NEGR1
OR4B1NDUFS3SPl1ARFGAP2

PACSIN3

DDB2 PSMC3 MTCH2

ACP2 RAPSN AGBL2

SLC39A13 C1QTNF4 OR4X2

OR4X1

OR4S1

PTPMT1 NUP160

FNBP4

ACP1

2
1
0

7
6
5

–l
og

10
 P

 v
al

ue
 B

M
I

4
3
2
1
0

7
6
5

–l
og

10
 P

 v
al

ue
 B

M
I

4
3
2
1
0

0.2 0.4 0.6
Position on chromosome 2 (Mb)

MTCH2

TMEM18 GNPDA2

KCTD15 NEGR1

SH2B1

0.8 1.0 44.4 44.6 44.8 45.0
Position on chromosome 4 (Mb) Position on chromosome 16 (Mb)

45.2 45.4 45.6 28.2 28.4 28.6 28.8 29.0 29.2 29.4

lllu550k
lllu317k

Affy500k
Imputed

rs9931989
rs7498665
r 2 = 0.8–1
r 2 = 0.5–0.8
r 2 = 0.3–0.5
r 2 < 0.3

lllu550k
lllu317k

Affy500k
Imputed

lllu550k
lllu317k

Affy500k
Imputed

lllu550k
lllu317k

Affy500k
Imputed

80

60 cM
/M

b40

20

0

7
6
5

–l
og

10
 P

 v
al

ue
 B

M
I

4
3
2
1
0

rs4752856
rs10838738
r 2 = 0.8–1
r 2 = 0.5–0.8
r 2 = 0.3–0.5
r 2 < 0.3

Pcombined = 5 × 10–9 Pcombined = 2 × 10–8

Pcombined = 6 × 10–8

rs415237
rs11084753
r 2 = 0.8–1
r 2 = 0.5–0.8
r 2 = 0.3–0.5
r 2 < 0.3

7
6
5

–l
og

10
 P

 v
al

ue
 B

M
I

4
3
2
1
0

47.0 47.5 48.0 38.8 38.9 39.0 39.1 39.2 72.2 72.4 72.6 72.8

Position on chromosome 11 (Mb) Position on chromosome 19 (Mb) Position on chromosome 1 (Mb)

100

80

60

cM
/M

b40

20

0

100

80

60

cM
/M

b40

20

0

7
6
5

–l
og

10
 P

 v
al

ue
 B

M
I

4
3
2
1
0

rs2815752

r 2 = 0.8–1
r 2 = 0.5–0.8
r 2 = 0.3–0.5
r 2 < 0.3

a b c

fed

Figure 2 Regional association plots showing signals in stage 1 samples for replicating loci around TMEM18, GNPDA2, SH2B1, MTCH2, KCTD15 and

NEGR1. (a–f) SNPs are plotted by position on chromosome against association with BMI (–log10 P value). The figures highlight the most significant SNP

after stage 1 meta-analysis (in purple) and the SNP selected for follow-up (diamond) in stage 2 analyses, labeled with its combined P value (stage 1 + stage

2). In most cases, the SNP followed up is the most significant SNP in the region (therefore, a purple diamond). Otherwise, the LD between the followed-up

SNP and the most significant SNP in the region is indicated by the color of the diamond. Estimated recombination rates (from HapMap) are plotted in cyan

to reflect the local LD structure. The SNPs surrounding the most significant SNP (purple diamond) are color-coded to reflect their LD with this SNP as in the

inset (taken from pairwise r2 values from the HapMap CEU database). Genes and the position of exons, as well as the direction of transcription, are noted

below the plots (data from UCSC genome browser) with a gray area marking the extent of the region that includes any SNP with r2 Z 0.3 relative to the

most significant SNP (purple diamond). Hashmarks represent SNP positions on each genotyping array used by any individual study and also show SNP

positions after imputation. In e, rs11084753 was selected as the reference SNP for the KCTD15 region and shows essentially identical results to rs415237.

The two SNPs are virtually superimposed on the association plot.
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diabetes15: GNPDA2 (P ¼ 6.6 � 10�5) and TMEM18 (P ¼ 7.5 �
10�4) (Supplementary Table 8). Most of the BMI-associated variants
were not significantly associated with these BMI-related traits,
most likely because of low power to detect very small effects in the
public datasets and the incomplete correlation between BMI and
these traits19.

Impact of copy number polymorphism (CNP) on BMI
A large fraction of human copy number variation arises from
common, diallellic polymorphisms20. Most of these CNPs are in LD
with adjacent SNPs, so their contribution to phenotypes can be
assessed via these SNPs20. We used these SNP–CNP LD relationships
to assess the extent to which this subset of human copy number
variation might influence BMI (see Methods). The distribution of
BMI association P values in stage 1 samples for CNP-tagging SNPs
conforms closely to the distribution expected under the null hypoth-
esis, except for a single SNP (rs2815752, P ¼ 9.3 � 10�6) (Fig. 4a).

We noticed that this SNP is the most strongly associated variant at
one of our six validated loci, NEGR1. To understand better common
patterns of structural variation at NEGR1, we analyzed hybridization
data from 270 HapMap samples, finding that two distinct genomic

segments upstream of NEGR1 are copy number variable (Fig. 4b).
Haplotype analysis indicated that two deletion polymorphisms—a
10-kb deletion and a 45-kb deletion—are segregating at the locus on
distinct haplotypes (Fig. 4c). The two most significantly BMI-
associated SNPs immediately flank the 45-kb deletion and are in
perfect LD with it (r2 ¼ 1.0) across all HapMap analysis panels.
Indeed, what initially seemed to be a long associated haplotype (the
47.3 kb spanned by these SNPs on the reference genome sequence) is
in fact a short haplotype whose major feature is the absence of 45.6 kb
of the reference sequence (Fig. 4c). The 45-kb deletion is therefore a
strong candidate to explain the association signal at NEGR1. Although
the deletion region consists entirely of noncoding sequence, the
deletion allele lacks several conserved elements upstream of
NEGR1 that are present on the other structural haplotypes at the
locus (Fig. 4c).

Possible role in the CNS of genes near associated variants
The newly discovered variants showing strong associations with BMI
lie in or downstream of KCTD15, SH2B1, TMEM18, MTCH2 and
GNPDA2, and upstream of NEGR1 (Fig. 2). SH2B1 is a strong prior
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Figure 3 Combined impact of risk alleles on average BMI in the population-

based EPIC-Norfolk cohort. All eight confirmed SNPs were successfully

genotyped in the EPIC-Norfolk cohort (14,409 individuals with complete

genotype data). For each individual, the number of risk alleles (0,1,2) per

SNP was weighted for their relative effect sizes estimated from the stage 2

cohort data only. Subsequently, the weighted risk alleles were summed for

each individual, and the overall individual sum was rounded to the nearest

integer to represent the individual’s risk allele score. Along the x axis,

individuals in each risk allele category are shown (grouped r3 and Z13 at

the extremes), and the mean BMI (± s.e.m.) is plotted (y axis on right), with

the line representing the regression of the mean BMI values across the risk-

allele scores. The histogram (y axis on left) represents the number of

individuals for each risk-score category.

Figure 4 Contribution of copy number polymorphism to BMI. (a) Quantile-

quantile plot of the –log10 P values for SNPs (n ¼ 261) that tag copy

number polymorphisms (r2 4 0.8) in the stage 1 genome-wide meta-

analysis data. The data generally conform to the uniform distribution

expected under the null hypothesis of no association, with the exception

of a strong association to the CNP-tagging SNP rs2815752 (near NEGR1).

(b) Copy number variation in the NEGR1 association region near

rs2815752. Heat map representation of the hybridization intensity of copy

number probes (SNP 6.0 array) across the NEGR1 association region in 90

HapMap CEU samples. Darker shades of red indicate reduced hybridization

intensity. The data indicate two regions of copy number variation (pale green

and pink rectangles in lower panel) upstream of NEGR1. (c) Structural

haplotypes and BMI association signal in the NEGR1 region. Two deletion

polymorphisms (a 10-kb and a 45-kb deletion affecting nonoverlapping

sequences upstream of NEGR1) segregate on distinct haplotypes. Both

deletions remove conserved elements upstream of NEGR1 (top panel). In
the bottom panel, the color of each SNP indicates the structural haplotype

with which it is in strongest LD; the size of each circle indicates the

strength of this LD. The 45-kb deletion is immediately flanked and perfectly

tagged (r2 ¼ 1.0) by the two most strongly BMI-associated SNPs; these

SNPs are separated by 47.3 kb on the reference genome sequence but by

only 1.7 kb on the BMI-associated deletion haplotype (red). These SNPs

flank but are not contained within the copy number variable region.
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candidate for regulating body weight. SH2B1 is implicated in leptin
signaling21, and Sh2b1-null mice are obese21. Notably, the obesity in
Sh2b1-null mice can be reversed by targeted Sh2b1 expression in
neurons21, suggesting that the effects of this gene on obesity are
mediated through the CNS. KCTD15, TMEM18 and GNPDA2 have
unknown functions, whereas MTCH2 encodes a putative mitochon-
drial carrier protein that may function in cellular apoptosis22,23, and
NEGR1 has a role in neuronal outgrowth24,25. Although fine mapping
and other experimental approaches will be required to identify and
confirm the causal variant(s) and gene(s) for each locus, we note that,
with the exception of SH2B1, our newly associated loci do not include
obvious or previously studied candidate genes26. Thus, a large sample
size and an unbiased genome-wide approach has not only increased
the number of known obesity loci, but also highlighted new aspects of
the biology of body weight regulation.

To provide additional data on where these genes may function, we
measured the expression of the genes nearest to our best SNP
association signals in a panel of different human tissues. We found
that, in our data, all genes except MTCH2 were highly expressed in the
brain and/or hypothalamus (Supplementary Fig. 3 online). Addi-
tionally, MTCH2 mRNA expression is observed in the brain in
publicly available expression data27, and in these data, variant
rs17788930 (r2 ¼ 1 with lead SNP rs10838738) was associated
(P ¼ 1.3 � 10�6) with MTCH2 mRNA levels (Supplementary
Table 8). These expression data suggest that, as is seen in monogenic
forms of obesity, inherited variation influences common human
obesity through effects in the CNS, although effects in other tissues
for at least some of these genes remain possible.

DISCUSSION
Through meta-analysis of GWA data from 432,000 samples, followed
by additional large-scale follow-up, we have identified six new loci that
show compelling associations with adult BMI. Four of these loci
(TMEM18, GNPDA2, SH2B1 and NEGR1) also show compelling
evidence of association with obesity in adults or children. In
general, definitive identification of the specific mechanisms through
which these loci influence BMI and obesity will require detailed fine
mapping and subsequent functional characterization. With the
exception of SH2B1, the genes most strongly implicated on the
basis of colocalization with the association signal have limited
prior candidacy.

We compared our results with those obtained in another large
GWAS of BMI, described in an accompanying manuscript by
Thorleifsson et al.12. For the five of our six newly identified loci
where a comparison was possible (those that had strongly correlated
proxies on the Illumina 317K genotyping platform at TMEM18,
KCTD15, SH2B1, MTCH2 and NEGR1), the data of Thorleifsson
et al. also showed strong evidence of association (Table 1); for
GNPDA2, no adequate proxy was available. None of the other top
SNPs for which we attempted replication and which had adequate
proxies showed evidence of associations in the study by Thorleifsson
et al. (Supplementary Table 5; results provided by U. Thorsteinsdottir,
G. Thorleifsson and K. Stefansson on behalf of Thorleifsson et al.).
After the six validated loci (and SNPs in LD with them) were removed
from our analysis, we no longer observed a clear excess of P values
smaller than expected by chance (Fig. 1c). One might conclude from
this that few detectable BMI loci remain to be found. However, we are
encouraged in further pursuit because among the remaining data are
two additional loci reported by Thorleifsson et al. (BDNF and ETV5);
both of these loci show strong confirming evidence for association in
our stage 1 meta-analysis (P values of 0.00035 and 0.00043).

Many of our associated loci highlight genes that are highly
expressed in the brain (and several particularly so in the hypothala-
mus), consistent with an important role for CNS processes in weight
regulation. We found that TMEM18, KCTD15, SH2B1, GNPDA2 and
NEGR1 are expressed at high levels in brain and hypothalamus (as are
FTO and MC4R; Supplementary Fig. 3). The remaining gene,
MTCH2, has evidence of expression in the brain in published
data27, as does BDNF28, a locus identified by Thorleifsson et al.12.
These results extend and confirm previous observations with respect
to FTO and MC4R, and are consistent with insights derived from
monogenic forms of obesity and functional studies. Disruption in
mice of Mc4r, Sh2b1 and Bdnf (all genes that seem to be involved in
signaling in the brain) results in hyperphagia and/or obesity, and both
Fto and Sh2b1 show diet- or obesity-related changes in expression in
hypothalamus21,29–34. Further general support for a neuronal basis for
obesity comes from the observation that NEGR1 is thought to affect
neuronal outgrowth24,25. Finally, the effect of variants that map
to a gene desert between GNPDA2 (Supplementary Fig. 3) and
GABRA2 (ref. 35) might be mediated by GABRA2, which affects
addiction behavior36–38. Abundant evidence supports multiple possi-
ble roles of the CNS on body weight regulation, including on
appetite, energy expenditure and other behavioral aspects39. Deter-
mining the precise mechanism of action of these loci will require
further experimentation.

Our analyses explicitly interrogate only a minority of common
sequence variants in a given region; we expect therefore that the causal
variant is, for some loci at least, yet to be examined. Although many
variants are strongly correlated at each locus, precluding definitive
identification of a causal variant, several loci have intriguing candi-
dates. These include a large polymorphic deletion in the association
interval upstream of NEGR1 (Fig. 4), and missense variants rs7498665
(A484T) at SH2B1 (r2 ¼ 0.71 to best SNP) and rs1064608 (A290P) at
MTCH2 (r2 ¼ 1.0 to best SNP), which also disrupts a predicted SC35
exonic splicing enhancer site40,41.

We cannot be sure which of the nearby genes are causally involved
in influencing BMI. As a source of additional clues to likely causal
mechanisms, we exploited publicly available eQTL data for lympho-
cytes42 and brain27, and tested for association between the eight
replicated variants and mRNA levels of the nearby genes (Supple-
mentary Fig. 3 and Supplementary Table 9 online). Other than
variants in the MTCH2 locus (associated with MTCH2 mRNA levels
in brain and NDUFS3 levels in lymphocytes) and in the SH2B1
locus (associated with EIF3C levels in lymphocytes and brain and
with TUFM levels in lymphocytes only), these studies did not yield
indications of the likely causal gene(s). The SH2B1 result also
illustrates some of the difficulties in interpreting associations with
gene expression levels, as the presence of a missense SNP in SH2B1
and the strong prior candidacy of this gene would seem to implicate
strongly alteration in SH2B1 function as the causal mechanism for
influencing obesity. One possibility is that the SH2B1 variant has a
causal role but happens to be in LD with a different variant that
influences EIF3C and TUFM mRNA levels; alternatively, regulation of
EIF3C or TUFM mRNA levels could have a causal role, instead of or in
addition to variation in SH2B1.

Logistically, one important challenge in executing our study was
coordinating analysis strategies and phenotype modeling across 15
different cohorts, each with specific genotyping, phenotyping, trait
modeling and analytical strategies. Given this challenge, we decided to
start by carrying out a meta-analysis of results from study-specific
analyses, relying only on knowledge of the BMI-increasing allele and
P value for each study, before completing a uniform analysis across all
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studies. Notably, we found very similar results between the study-
specific analysis, in which different adjustments for covariates and
analytical procedures were performed in different studies, and the
uniform analysis, in which these procedures were harmonized across
all studies (Supplementary Fig. 2). Thus, at least for this phenotype,
the association analysis is robust enough to differences in phenotypic
modeling so that differences in study design or analytic strategies do
not preclude discovery of new loci using meta-analysis.

The effect sizes attributable to the associated variants range from
0.06 to 0.33 BMI units per allele, and each explains only a small
proportion of the variance in adult BMI. As might be expected, given
these modest effects and the smaller size of the relevant available
datasets, we did not consistently observe measurable effects on the risk
of diseases in which obesity is one of several contributing factors (such
as type 2 diabetes). It is also possible that some of these variants
influence BMI but have negligible effects on the downstream risk of
obesity-related disease. Despite these small effects on BMI, when we
combined information from the eight validated loci, we were able to
identify small groups of individuals who differ appreciably with
respect to mean BMI. However, at the population level, the value of
these signals in predicting obesity remains quite limited (Supplemen-
tary Fig. 4 online).

These results raise the question as to why the variants detected in
this large study only explain a small fraction of the inherited variability
in BMI. There are several possible explanations, which require further
experimentation to explore. First, there may be many more loci with
common variants that influence BMI. We can predict that additional
loci will be discovered by similarly sized studies in new samples:
because we had only 5–10% power to detect variants such as those at
KCTD15, MTCH2 and NEGR1, dozens of additional variants with
comparable effect sizes likely remain unidentified. The number of
common variants with smaller effects, and which might be detected
with larger samples, is harder to predict, as this depends on the allelic
architecture; if the number of causal variants increases as effect sizes
decrease, then increasing sample size will be especially productive.
Modifying effects such as interactions with environmental factors,
other genetic variants, age, sex or other variables may, if substantial,
also diminish apparent effect sizes, so detailed analyses of interaction
with validated variants may be informative. Finally, other than the
MC4R coding region, these loci have not yet been explored thoroughly
for additional rare (or common) variants. As such, it is not known
whether additional variants at these loci (those causal for the index
association or those representing independent causal events) could
explain a greater fraction of BMI variation. There are a growing
number of examples, including at MC4R, where genes containing
common variants associated with a particular phenotype also harbor
lower-frequency, higher-penetrance variants with more severe pheno-
typic consequences16,43–46. Comprehensive sequencing studies in these
and other loci (perhaps in individuals with extreme obesity) may
represent a path to finding such variants and beginning to explore the
relative contributions of common and rare variation to BMI. Dis-
covering additional variants will slowly increase predictive power.
However, a greater immediate impact of these studies is the identifica-
tion of previously unsuspected loci that participate in the biology of
body weight regulation, and which may help guide the development of
new therapies.

METHODS
Study design. This study is comprised of two stages. Stage 1 is a meta-analysis

of GWA studies comprised of 32,387 individuals of European ancestry. This

meta-analysis allowed us to select 35 loci for detailed examination in stage 2,

which included direct genotyping in 45,018 European-origin individuals from

nine studies and in silico comparisons with results from 14,064 European-origin

individuals from five studies with GWA data (Supplementary Fig. 1 and

Supplementary Table 1).

Stage 1 samples and genotyping. The GIANT consortium currently encom-

passes 15 study cohorts with 32,387 individuals of European ancestry infor-

mative for adult BMI (Supplementary Fig. 1 and Supplementary Table 1).

The 15 study cohorts, including between 1,094 and 5,433 individuals each,

were genotyped using the Affymetrix 500K Mapping Array Set (11 cohorts,

n ¼ 25,394), Illumina HumanHap300 BeadChip (2 cohorts, n ¼ 2,385),

Illumina HumanHap300+240 (1 cohort, n ¼ 2,235) or Illumina HumanHap

550 BeadChip (1 cohort, n ¼ 2,265) (Supplementary Tables 2 and 3). To allow

for meta-analysis across different marker sets and to improve coverage of the

genome, we performed imputation of polymorphic HapMap CEU SNPs

(Supplementary Note and Supplementary Table 3) using either MACH

(Y. Li, C.J.W., J. Ding, P.S. and G.R.A., unpublished data) or IMPUTE47.

Association analysis with BMI and meta-analysis of association results. First,

each study performed GWA analyses for BMI assuming an additive model

implemented in either MACH2QTL (Y. Li, C.J.W., J. Ding, P.S. and G.R.A.,

unpublished data), Merlin48,49 or SNPTEST47. Covariates, trait transformation

and strategies for excluding outliers or accounting for family relatedness varied

according to each study’s original design (Supplementary Tables 2 and 3), but

the main results were essentially unchanged when we repeated meta-analysis

after imposing a uniform set of analyses and procedures across the 15 study

cohorts. For those samples based around case-control designs (such as

those from FUSION and from the type 2 diabetes, coronary artery disease,

and hypertension components of the Wellcome Trust Case Control Consor-

tium), cases were analyzed separately from controls. To allow for relatedness in

the SardiNIA and FUSION samples, regression coefficients were estimated

in the context of a variance component model that modeled background

polygenic effects49.

Next, we carried out meta-analysis using a weighted z-score method, which

accounts for the direction of association relative to a consistent reference allele.

In this method, P values for each study are first converted to z scores. Then, a

weighted sum of z scores is calculated where each statistic is weighted by the

square root of the sample size for each study. The resulting sum is divided by

the square root of the total sample size to obtain an overall z statistic, which can

be used to evaluate the overall evidence for association. The method takes

direction of effect across studies into account by reversing the sign of the z score

for a study if the effect is in the opposite direction. We obtained similar results

when we analyzed each cohort using a uniform protocol (which involved a

quantile transformation to approximate normality and adjusting for age and

age2 in men and women separately) and combined the results using the

regression coefficients and standard errors estimated from each study (Supple-

mentary Fig. 2; Pearson correlation r ¼ 0.91). Both meta-analysis procedures

were implemented in the freely available METAL software package. The

genomic control parameter l was 1.10 in our initial meta-analysis without

using genomic control correction in any study except SardiNIA, which, given

our large sample size, suggests only a modest impact of unmodeled relatedness

or population stratification in our results. The P values we report have all

subsequently been corrected for this unmodeled relatedness or population

stratification by application of a genomic control correction to all input studies

as well as to the meta-analysis results.

Selection of SNPs for follow-up. For follow-up analyses (stage 2), we

genotyped 35 SNPs drawn from the most significantly associated independent

loci. We defined signals at two SNPs to be independent of each other if the

SNPs were in low LD (r2 o 0.3) or if they were 41 Mb apart. In some cases,

the SNP with the strongest signal of association at a locus could not be

genotyped for technical reasons, and we substituted another SNP that was

strongly correlated with the original SNP in the HapMap CEU sample

(Supplementary Note). Because SNP selection was based on an earlier version

of the meta-analysis and because some SNPs failed primer design, not all of the

top signals were represented among the 35 SNPs. Among the SNPs that were

followed up, the highest stage 1 P value was 6.9 � 10�4.
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Stage 2 samples and genotyping. We genotyped 35 SNPs in a total of 45,018

individuals of European ancestry from nine study cohorts using Sequenom

iPLEX or TaqMan (Supplementary Note). Individuals were eliminated from

analysis if o80% of SNPs were called successfully. Among successfully typed

individuals, genotype frequencies were in Hardy-Weinberg equilibrium

(P 4 10�6), call rates were 494%, and concordance of duplicate genotypes

was 499% in each of the follow-up study cohorts.

For in silico replication, we also obtained association results for 35 SNPs

from 14,064 individuals of European ancestry from five studies (Supplemen-

tary Table 1). The five study cohorts, each including 856 to 5,373 individuals,

were genotyped using the Illumina HumanHap 550, 300 or Illumina Human

CNV370 DUO (Supplementary Tables 2 and 3). To allow for meta-analysis

across different marker sets and to improve coverage of the genome, we carried

out imputation of polymorphic (minor allele frequency 41%) autosomal

HapMap SNPs (Supplementary Note and Supplementary Table 3) using

either MACH or IMPUTE with the HapMap CEU sample as a reference panel.

We accounted for uncertainty in each genotype prediction in the analysis of

imputed genotype data by using either the dosage information from MACH or

the genotype probabilities from IMPUTE. Stage 1 and 2 results for FTO and

MC4R are not presented directly in the main text but are shown for comparison

in Supplementary Table 5 and Supplementary Figure 5 online.

Association analyses with BMI and secondary analyses. Association with BMI

was tested as in stage 1, assuming an additive model. Logistic regression

analysis was used to test for association with the risk of being overweight

(defined as BMI Z 25 kg/m2) or obese (BMI Z 30 kg/m2), with adjustment for

age, age2, and sex, testing for SNP effects in an additive genetic model. Evidence

for association between our replicating SNPs and type 2 diabetes15, lipid levels16

and coronary artery disease17,18 was extracted from publicly available datasets.

The effect of the replicating SNPs on expression of nearby genes was

determined from publicly available eQTL GWA studies from lymphocytes42

and brain tissue27.

Gene expression studies. Adult human RNA samples were obtained from

Clontech either as poly(A) purified RNA (hypothalamus and adipocyte) or as

total RNA (cerebellum, cortex, spleen, pancreas, lung, kidney, liver, testes and

total brain). The total RNAs were purified to poly-A RNA using the Micro-

Poly(A)Purist kit (Ambion) according to manufacturer’s instructions. We used

20 ng of poly(A) RNA in a random-primed first-strand cDNA synthesis using

SuperScript II (Invitrogen) according to manufacturer’s instructions. The

resulting cDNAs were diluted fourfold, and 5 ml of each sample were used in

12 ml reaction with SYBR Green PCR Master Mix kit (Applied Biosystems).

Quantitative PCR reactions were done in triplicate on an ABI 7900HT (Applied

Biosystems). We calculated expression levels from their average crossing points

and expressed relative to the control gene EEF2 (elongation factor 2) and

normalized to levels of gene-specific expression in total brain.

CNV analyses. We previously typed 1,350 copy number polymorphisms

(CNPs) in the HapMap analysis panels; 360 of these CNPs were found to be

common (minor allele frequency 45%) in individuals with European ancestry

(HapMap CEU), explaining more than 80% of the copy number differences

between any two individuals. 323 common CNPs seemed to be diallelic, and of

these 261 were in strong LD with HapMap SNPs that are close to, but do not

overlap, the CNPs20. For the current work, for each of these common, diallelic

CNPs, we identified (from among the SNPs successfully typed or imputed in

the GIANT meta-analysis) the SNP that best captured each CNP via LD in

HapMap CEU. This formed the set of 261 ‘CNP-tagging SNPs’ that

were used for analysis here; we used the GIANT meta-analysis P values for

these SNPs.

At the NEGR1 locus, we found that the 10-kb deletion, the 45-kb deletion

and the reference structural allele at NEGR1 each have perfect tagging SNPs

(r2 ¼ 1.0) in the HapMap CEU sample. In constructing Figure 4c, we colored

each SNP according to which of these structural-allele-tagging SNPs it showed

the strongest LD with in HapMap CEU. Locations of conserved elements were

obtained from the phastConsElements17way track of the UCSC Genome

Browser. A threshold score of 300 was set for inclusion in this figure.

URLs. MaCH, http://www.sph.umich.edu/csg/abecasis/mach/. METAL, http://

www.sph.umich.edu/csg/abecasis/metal/.

Note: Supplementary information is available on the Nature Genetics website.
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